Watching rocks grow: Theory explains landscape of geothermal springs

Jul 05, 2006

Physicists at the University of Illinois at Urbana-Champaign have successfully modeled the spectacular landscapes seen at geothermal hot springs.

In work reported in Physical Review Letters on June 27, physics professor Nigel Goldenfeld and graduate students Pak Yuen Chan and John Veysey present a theoretical model that describes how hot spring water flows over the landscape, depositing calcium-carbonate minerals in the form of travertine. These deposits then dam and divert the water.

"The nonlinear feedback between these two effects inexorably leads to the visually striking landscapes seen throughout the world's hot spring formations," Goldenfeld said. "Remarkably, the resulting geological structures don't depend on the rock structure or the mineral content – the statistical properties of the landscapes can be computed precisely."

The Illinois team was able to analyze such complex landscapes by using novel computational tools that they related to more standard mathematical approaches.

Composed of a nested series of ponds and terraces, hot spring landscapes are not sculpted by the forces of erosion. Instead, the rocks actually grow at a rate of about 1 millimeter per day. The Illinois group's model correctly simulates the way in which the landscape changes over time.

Hot springs comprise a complex ecosystem of interacting microbes, geochemistry and mineralogy. The rapid precipitation of calcium carbonate results in shifting flows, and in the sealing off of some springs and the eruption of new vents.

"Now that we understand the physical processes involved in how these rocks grow, we can address the way in which heat-loving microbes populate and influence the hot springs," Veysey said.

Source: University of Illinois at Urbana-Champaign

Explore further: New filter could advance terahertz data transmission

add to favorites email to friend print save as pdf

Related Stories

Cities can spawn more thunderstorms, study says

Feb 18, 2015

Here's a potential jolt to urbanites: Some big cities, particularly those located in hot and humid environments, actually birth more thunderstorms than surrounding rural areas.

A long-sought goal: Crystallizing an elusive protein

Mar 25, 2013

(Phys.org) —Plants use an enzyme known as "rubisco" to capture carbon dioxide from the atmosphere and, with energy from the sun and nutrients from the soil, build up the shoots, leaves, and stems that make ...

Finding Chicago's food gardens with Google Earth

Jan 03, 2013

Urban agriculture is promoted as a strategy for dealing with food insecurity, stimulating economic development, and combating diet-related health problems in cities. However, up to now, no one has known how much gardening ...

Recommended for you

New filter could advance terahertz data transmission

Feb 27, 2015

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

Feb 27, 2015

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

A new X-ray microscope for nanoscale imaging

Feb 27, 2015

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

Top-precision optical atomic clock starts ticking

Feb 26, 2015

A state-of-the-art optical atomic clock, collaboratively developed by scientists from the University of Warsaw, Jagiellonian University, and Nicolaus Copernicus University, is now "ticking away" at the National ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.