Seeing is believing -- researchers explain 'x-ray specs' effect

Jul 03, 2006
Seeing is believing - Imperial researchers explain 'x-ray specs' effect

An annual exhibition showcasing the best of UK science and technology this year includes a novel optical effect pioneered by physicists at Imperial College London.

The effect, which could one day render solid objects such as walls transparent, will be explained at the Royal Society Summer Science Exhibition between 3 and 6 July.

The technique has been developed by Chris Phillips and Mark Frogley at Imperial's Department of Physics with colleagues at the University of Neuchatel, Switzerland. The researchers believe it could eventually be used to see through rubble at earthquake sites or look at parts of the body obscured by bone, as well as having exciting potential for sending and storing secure data. Dr Frogley says:

"The whole team is looking forward to engaging with visitors to the exhibition and giving them a taste of the potential impact of this work on our lives. Science and physics in particular can seem daunting, so this is a great opportunity to show what life as a scientist is really like, and the excitement of achieving such amazing new effects."

The breakthrough is based on the development of a new material that exploits the way atoms in matter move, to make them interact with a laser beam in an entirely new way.

It is founded on a breakthrough which contradicts Einstein's theory that in order for a laser to work, the light-amplifying material it contains, usually a crystal or glass, must be brought to a state known as 'population inversion'. This refers to the condition of the atoms within the material, which must be excited with enough energy to make them emit rather than absorb light.

Quantum physicists, however, have long predicted that by interfering with the wave-patterns of atoms, light could be amplified without population inversion. This has previously been demonstrated in the atoms of gases but has not before been shown in solids.

In order to make this breakthrough, the team created specially patterned crystals only a few billionths of a metre in length that behaved like 'artificial atoms'. When light was shone into the crystals, it became entangled with the crystals at a molecular level rather than being absorbed, causing the material to become transparent.

This new transparent material created by the entanglement is made up of molecules that are half matter and half light. This allows light to be amplified without population inversion for the first time in a solid. Professor Phillips says:

"This real life 'x-ray specs' effect relies on a property of matter that is usually ignored - that the electrons it contains move in a wave-like way. What we have learnt is how to control these waves directly. The results can be pretty weird at times, but it's very exciting and so fundamental. At the moment the effect can only be produced in a lab under specific conditions but it has the potential to lead to all sorts of new applications."

Source: Imperial College London

Explore further: World's first photonic pressure sensor outshines traditional mercury standard

add to favorites email to friend print save as pdf

Related Stories

Fighting the global water scarcity issue

1 hour ago

According to the World Water Management Institute, over one-third of the human population is affected by water scarcity. If nothing is done to prevent it, an estimated 1.8 billion people will be living in ...

Gold nanoparticle chains confine light to the nanoscale

Oct 29, 2014

A multidisciplinary team at the Centre d'Elaboration de Matériaux et d'Etudes Structurales (CEMES, CNRS), working in collaboration with physicists in Singapore and chemists in Bristol (UK), have shown that ...

Gentle caffeine boost for premature babies

Oct 29, 2014

Swiss researchers have developed a UV-activated membrane which releases a gentle dose of medication to the skin of a patient. In future those who fear injections will be able to sleep soundly, as will premature ...

Supersonic laser-propelled rockets

21 hours ago

Scientists and science fiction writers alike have dreamt of aircrafts that are propelled by beams of light rather than conventional fuels. Now, a new method for improving the thrust generated by such laser-propulsion ...

NASA team proposes to use laser to track orbital debris

Oct 28, 2014

(Phys.org) —As participation in space exploration grows worldwide, so does the impact of orbital debris—man-made "space junk" that poses significant hazards to live spacecraft and astronauts should they ...

Recommended for you

Formula could shed light on global climate change

1 hour ago

Wright State University researchers have discovered a formula that accurately predicts the rate at which soil develops from the surface to the underlying rock, a breakthrough that could answer questions about ...

New world record for a neutron scattering magnet

2 hours ago

A unique magnet developed by the Florida State University-headquartered National High Magnetic Field Laboratory (MagLab) and Germany's Helmholtz Centre Berlin (HZB) has reached a new world record for a neutron ...

The science of charismatic voices

19 hours ago

When a right-wing Italian politician named Umberto Bossi suffered a severe stroke in 2004, his speech became permanently impaired. Strangely, this change impacted Bossi's perception among his party's followers—from appearing ...

Urban seismic network detects human sounds

19 hours ago

When listening to the Earth, what clues can seismic data reveal about the impact of urban life? Although naturally occurring vibrations have proven extremely useful to seismologists, until now the vibrations ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.