Seeing is believing -- researchers explain 'x-ray specs' effect

Jul 03, 2006
Seeing is believing - Imperial researchers explain 'x-ray specs' effect

An annual exhibition showcasing the best of UK science and technology this year includes a novel optical effect pioneered by physicists at Imperial College London.

The effect, which could one day render solid objects such as walls transparent, will be explained at the Royal Society Summer Science Exhibition between 3 and 6 July.

The technique has been developed by Chris Phillips and Mark Frogley at Imperial's Department of Physics with colleagues at the University of Neuchatel, Switzerland. The researchers believe it could eventually be used to see through rubble at earthquake sites or look at parts of the body obscured by bone, as well as having exciting potential for sending and storing secure data. Dr Frogley says:

"The whole team is looking forward to engaging with visitors to the exhibition and giving them a taste of the potential impact of this work on our lives. Science and physics in particular can seem daunting, so this is a great opportunity to show what life as a scientist is really like, and the excitement of achieving such amazing new effects."

The breakthrough is based on the development of a new material that exploits the way atoms in matter move, to make them interact with a laser beam in an entirely new way.

It is founded on a breakthrough which contradicts Einstein's theory that in order for a laser to work, the light-amplifying material it contains, usually a crystal or glass, must be brought to a state known as 'population inversion'. This refers to the condition of the atoms within the material, which must be excited with enough energy to make them emit rather than absorb light.

Quantum physicists, however, have long predicted that by interfering with the wave-patterns of atoms, light could be amplified without population inversion. This has previously been demonstrated in the atoms of gases but has not before been shown in solids.

In order to make this breakthrough, the team created specially patterned crystals only a few billionths of a metre in length that behaved like 'artificial atoms'. When light was shone into the crystals, it became entangled with the crystals at a molecular level rather than being absorbed, causing the material to become transparent.

This new transparent material created by the entanglement is made up of molecules that are half matter and half light. This allows light to be amplified without population inversion for the first time in a solid. Professor Phillips says:

"This real life 'x-ray specs' effect relies on a property of matter that is usually ignored - that the electrons it contains move in a wave-like way. What we have learnt is how to control these waves directly. The results can be pretty weird at times, but it's very exciting and so fundamental. At the moment the effect can only be produced in a lab under specific conditions but it has the potential to lead to all sorts of new applications."

Source: Imperial College London

Explore further: Direct visualization of magnetoelectric domains

Related Stories

Vesta—Ceres' little sister

17 hours ago

Only around 60 million kilometres closer to the Sun than Ceres, another large rock is orbiting in the remote asteroid belt: Vesta. Although its diameter of approximately 530 kilometres makes it a bit too ...

Electron trapping harnessed to make light sensors

13 hours ago

Traps. Whether you're squaring off against the Empire or trying to wring electricity out of sunlight, they're almost never a good thing. But sometimes you can turn that trap to your advantage. A team from ...

Glitter cloud may serve as space mirror

Apr 16, 2015

What does glitter have to do with finding stars and planets outside our solar system? Space telescopes may one day make use of glitter-like materials to help take images of new worlds, according to researchers ...

Giant galaxies die from the inside out

Apr 16, 2015

A major astrophysical mystery has centred on how massive, quiescent elliptical galaxies, common in the modern Universe, quenched their once furious rates of star formation. Such colossal galaxies, often also ...

Recommended for you

Thinner capsules yield faster implosions

9 hours ago

In National Ignition Facility (NIF) inertial confinement fusion (ICF) experiments, the fusion fuel implodes at a high speed in reaction to the rapid ablation, or blow-off, of the outer layers of the target ...

Direct visualization of magnetoelectric domains

11 hours ago

A novel microscopy technique called magnetoelectric force microscopy (MeFM) was developed to detect the local cross-coupling between magnetic and electric dipoles. Combined experimental observation and theoretical ...

Upside down and inside out

12 hours ago

Researchers have captured the first 3D video of a living algal embryo turning itself inside out, from a sphere to a mushroom shape and back again. The results could help unravel the mechanical processes at ...

Heat makes electrons spin in magnetic superconductors

Apr 24, 2015

Physicists have shown how heat can be exploited for controlling magnetic properties of matter. The finding helps in the development of more efficient mass memories. The result was published yesterday in Physical Review Le ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.