New Method for Earthquakes Prediction

Aug 06, 2004

Scientists at Stockholm University in Sweden may have developed a new method for predicting earthquakes with the help of geochemistry. The method involves metering the content of certain metals in underground water, which changes before and after an earthquake.

The team of researchers behind these discoveries, presented in the latest issue of the scientific journal Geology, is led by Alasdair Skelton, professor of petrology and geochemistry at Stockholm University. An other member of the research group is Lillemor Claesson at the same department.

Earthquakes primarily represent a threat to areas where continental plates meet: Japan, Turkey, California, for example. A major problem is the difficulty of quickly predicting quakes and the risks in these prone areas. Now Alasdair Skelton and his research team are claiming that it may be possible to predict tremors by metering how the content of metals in underground water changes.

The method was developed in Iceland, before and after a major earthquake (5.8 on the Richter scale). The chemistry of Ice Age water was sampled from a 1.5 km deep well in northern Iceland and was monitored for 10 weeks before and one year after the earthquake, which occurred on September 16, 2002.

Chemical peaks for iron and chromium, manganese, zinc and copper were detected 10, 5, 2, and 1 week(s) before the earthquake. After the tremor they returned to their normal levels. Comparison with experimental studies indicates that these chemicals were dissolved from the surrounding rock, but at higher temperature and therefore deeper in the Earth's crust. Upward migration of this chemically-fingerprinted water to the team's sampling station could result from changes in the permeability of the Earth's crust, caused by the accumulation of energy before the earthquake.

Alasdair Skelton feels that it is now time to test whether these observations from Iceland agree with observations and metering in other earthquake-prone areas.

"Water chemistry may thus provide us with a tool which may help us to predict earthquakes. Shortly after the earthquake, we detected a rapid chemical shift for a range of elements and isotopes. We interpret these changes as indicative of the rapidity with which the permeability of the fault zone changes during an earthquake cycle, with one reservoir being sealed off, while another is unsealed," says Alasdair Skelton.

Source: Stockholm University

Explore further: Launch pad where rocket exploded back next year

add to favorites email to friend print save as pdf

Related Stories

Fingers pointed as climate talks deadlock

9 hours ago

Accusations flew at deadlocked UN climate talks in Lima on Saturday, as the United States warned that failure to compromise could doom the 22-year-old global forum.

Fun cryptography app pleases students and teachers

19 hours ago

Up on Google Play this week is Cryptoy...something that you might want to check out if you or someone you know wishes entry into the world of cryptography via an educational and fun app. You learn more about ciphers and keys; you ...

Recommended for you

Politics no problem, say US and Russian spacefarers

5 hours ago

US-Russian ties may have returned to Cold War levels, but an astronaut and a cosmonaut gearing up for the longest flight on the International Space Station said Thursday politics would not disrupt their work ...

Kepler proves it can still find planets

7 hours ago

To paraphrase Mark Twain, the report of the Kepler spacecraft's death was greatly exaggerated. Despite a malfunction that ended its primary mission in May 2013, Kepler is still alive and working. The evidence ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.