New Method for Earthquakes Prediction

Aug 06, 2004

Scientists at Stockholm University in Sweden may have developed a new method for predicting earthquakes with the help of geochemistry. The method involves metering the content of certain metals in underground water, which changes before and after an earthquake.

The team of researchers behind these discoveries, presented in the latest issue of the scientific journal Geology, is led by Alasdair Skelton, professor of petrology and geochemistry at Stockholm University. An other member of the research group is Lillemor Claesson at the same department.

Earthquakes primarily represent a threat to areas where continental plates meet: Japan, Turkey, California, for example. A major problem is the difficulty of quickly predicting quakes and the risks in these prone areas. Now Alasdair Skelton and his research team are claiming that it may be possible to predict tremors by metering how the content of metals in underground water changes.

The method was developed in Iceland, before and after a major earthquake (5.8 on the Richter scale). The chemistry of Ice Age water was sampled from a 1.5 km deep well in northern Iceland and was monitored for 10 weeks before and one year after the earthquake, which occurred on September 16, 2002.

Chemical peaks for iron and chromium, manganese, zinc and copper were detected 10, 5, 2, and 1 week(s) before the earthquake. After the tremor they returned to their normal levels. Comparison with experimental studies indicates that these chemicals were dissolved from the surrounding rock, but at higher temperature and therefore deeper in the Earth's crust. Upward migration of this chemically-fingerprinted water to the team's sampling station could result from changes in the permeability of the Earth's crust, caused by the accumulation of energy before the earthquake.

Alasdair Skelton feels that it is now time to test whether these observations from Iceland agree with observations and metering in other earthquake-prone areas.

"Water chemistry may thus provide us with a tool which may help us to predict earthquakes. Shortly after the earthquake, we detected a rapid chemical shift for a range of elements and isotopes. We interpret these changes as indicative of the rapidity with which the permeability of the fault zone changes during an earthquake cycle, with one reservoir being sealed off, while another is unsealed," says Alasdair Skelton.

Source: Stockholm University

Explore further: Scars on Mars from 2012 rover landing fade—usually

add to favorites email to friend print save as pdf

Related Stories

Feds document seabird loss in North Pacific waters

Mar 19, 2015

The number of seabirds, including gulls, puffins and auklets, has dropped significantly in the Gulf of Alaska and northeast Bering Sea, a possible consequence of warmer waters, according to a preliminary ...

Preemptive design saving cities

Mar 09, 2015

Miho Mazereeuw is the founder of the Urban Risk Lab. She designs buildings and cities in anticipation of disasters. "Working in a field that has traditionally been the domain of emergency managers and engineers, ...

Recommended for you

Europe resumes Galileo satnav deployment (Update)

Mar 27, 2015

Europe resumed deployment of its beleaguered Galileo satnav programme on Friday, launching a pair of satellites seven months after a rocket malfunction sent two multi-million euro orbiters awry.

More evidence for groundwater on Mars

Mar 27, 2015

Monica Pondrelli and colleagues investigated the Equatorial Layered Deposits (ELDs) of Arabia Terra in Firsoff crater area, Mars, to understand their formation and potential habitability. On the plateau, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.