Hubble Reveals Two Dust Disks Around Nearby Star

Jun 27, 2006
Hubble Reveals Two Dust Disks Around Nearby Star
Credit: Credit: NASA, ESA, D. Golimowski (Johns Hopkins University), D. Ardila (IPAC), J. Krist (JPL), M. Clampin (GSFC), H. Ford (JHU), and Garth Illingworth (UCO/Lick) and the ACS Science Team

NASA's Hubble Space Telescope has revealed two dust disks circling the nearby star Beta Pictoris. The images confirm a decade of scientific speculation that a warp in the young star's dust disk may actually be a second inclined disk, which is evidence for the possibility of at least one Jupiter-size planet orbiting the star.

The disk is fainter than the star because, at the visible wavelengths measured, its dust only reflects light. To see the faint disk, astronomers used Hubble’s Advanced Camera for Surveys' coronagraph, which blocked the light from Beta Pictoris. The images clearly show a distinct secondary disk that is tilted by about four degrees from the main disk. The secondary disk is visible out to roughly 24 billion miles from the star, and probably extends even farther. The finding appears in the June 2006 issue of the Astronomical Journal.

The best explanation for the observations is that a suspected unseen planet, up to 20 times the mass of Jupiter and in an orbit within the secondary disk, is using gravity to sweep up material from the primary disk.

"The Hubble observation shows that it is not simply a warp in the dust disk but two concentrations of dust in two separate disks," said lead astronomer David Golimowski of Johns Hopkins University in Baltimore. "The finding suggests that planets could be forming in two different planes. We know this can happen because the planets in our solar system are typically inclined to Earth's orbit by several degrees. Perhaps stars forming more than one dust disk may be the norm in the formative years of a star system."

Computer models by David Mouillet and Jean-Charles Augereau of Grenoble Observatory in France suggest how a secondary dust disk can form. A massive planet in an inclined orbit gravitationally attracts small bodies of rock and/or ice, called planetesimals, from the main disk, and moves them into an orbit aligned with that of the planet.

These perturbed planetesimals then collide with each other, producing the tilted dust disk seen in the new Hubble images.

"The actual lifetime of a dust grain is relatively short, maybe a few hundred thousand years," Golimowski said. "So the fact that we can still see these disks around a 10- to 20-million-year-old star means that the dust is being replenished by collisions between planetesimals."

Astronomers do not know how the massive planet, if it exists, settled into an inclined orbit. However, computer simulations by multiple research teams show planet embryos, which start out in a very thin plane, can, through gravitational interactions, scatter into orbits that become inclined to the primary disk.

Beta Pictoris is located 63 light-years away in the southern constellation Pictor. Although the star is much younger than the sun, it is twice as massive and nine times more luminous. Beta Pictoris entered the limelight more than 20 years ago when the multinational Infrared Astronomical Satellite detected excess infrared radiation from the star. Astronomers attributed this excess to the presence of warm dust in a disk around the star. The dust disk was first imaged by ground-based telescopes in 1984. The images showed the disk is seen nearly edge-on from Earth. Hubble observations in 1995 revealed an apparent warp in the disk. Subsequent images obtained in 2000 by Hubble's Imaging Spectrograph confirmed the warp.

The latter study was led by Sara Heap of NASA's Goddard Space Flight Center in Greenbelt, Md. Heap and her colleagues suggested the apparent warp may be an unresolved secondary disk tilted about four degrees from the main disk. Several teams of astronomers attributed the warp to a planet in a tilted orbit out of the plane of the main disk.

Astronomers using ground-based telescopes also found various asymmetries in the star's disk. Infrared images taken in 2002 by the Keck II Observatory in Hawaii showed that another smaller inner disk may exist around the star in a region the size of our solar system. Golimowski's team did not spot the inner disk because it is small and blocked by the Advanced Camera's coronagraph. This possible inner disk is tilted in the opposite direction from the disk seen in the new Hubble images. This misalignment implies the tilted disks are not directly related. Nevertheless, they both may bolster evidence for the existence of one or more planets orbiting the star.

Source: NASA

Explore further: Cosmologists weigh cosmic filaments and voids

add to favorites email to friend print save as pdf

Related Stories

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

Black hole makes 'String of Pearls' clusters

Apr 01, 2014

(Phys.org) —Huge young star clusters resembling a string of pearls around a black hole in the centre of a galaxy 120 million light-years away have been discovered by researchers at Swinburne University ...

The opposition of Mars

Mar 28, 2014

By the time you finish reading this story, you'll be about 1,000 km closer to the planet Mars.

Astronomers looking for clues to water's origins

Mar 27, 2014

A gas and dust cloud collapses to form a star. Amid a whirling disc of debris, little bits of rock coated with liquid water and ice begin to stick together. It is this stage of a star's formation that astronomers ...

The dusty heart of an active galaxy

Mar 13, 2014

(Phys.org) —An international research team led by Konrad Tristram from the Max-Planck-Institute for Radio Astronomy in Bonn, Germany, obtained the most detailed view so far of the warm dust in the environment ...

Recommended for you

Cosmologists weigh cosmic filaments and voids

2 hours ago

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

ESO image: A study in scarlet

Apr 16, 2014

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

Apr 15, 2014

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

User comments : 0

More news stories

Cosmologists weigh cosmic filaments and voids

(Phys.org) —Cosmologists have established that much of the stuff of the universe is made of dark matter, a mysterious, invisible substance that can't be directly detected but which exerts a gravitational ...

Meteorites yield clues to Martian early atmosphere

(Phys.org) —Geologists who analyzed 40 meteorites that fell to Earth from Mars unlocked secrets of the Martian atmosphere hidden in the chemical signatures of these ancient rocks. Their study, published ...

Let's put a sailboat on Titan

The large moons orbiting the gas giants in our solar system have been getting increasing attention in recent years. Titan, Saturn's largest moon, is the only natural satellite known to house a thick atmosphere. ...

Net neutrality balancing act

Researchers in Italy, writing in the International Journal of Technology, Policy and Management have demonstrated that net neutrality benefits content creator and consumers without compromising provider innovation nor pr ...