Scientists accurately simulate appearance of sun's corona during eclipse

Jun 26, 2006
Scientists accurately simulate appearance of sun's corona during eclipse
Scientists simulated the appearance of the Sun's corona during a March, 2006, solar eclipse. Credit: Science Applications International Corporation and NASA

The most true-to-life computer simulation ever made of our sun's multimillion-degree outer atmosphere, the corona, successfully predicted its actual appearance during the March 29, 2006, solar eclipse, scientists have announced.

The research, funded by NASA and the National Science Foundation (NSF), marks the beginning of a new era in space weather prediction. The results are presented today at the American Astronomical Society (AAS)'s Solar Physics Division meeting in Durham, N.H.

"This confirms that computer models can describe the physics of the solar corona," said Zoran Mikic of Science Applications International Corporation (SAIC), San Diego, Calif.

The turbulent corona is threaded with magnetic fields generated beneath the visible solar surface. The evolution of these magnetic fields causes violent eruptions and solar storms originating in the corona.

Like a rubber band that's been twisted too tightly, solar magnetic fields suddenly snap to a new shape while blasting billions of tons of plasma into space, at millions of miles per hour, in what scientists call a coronal mass ejection (CME). Or the magnetic field explodes as a solar flare with the force of up to a billion 1-megaton nuclear bombs.

When directed at Earth, solar flares and CMEs can disrupt satellites, communications and power systems.

"Finding out that a hurricane is bearing down on you isn't much good if the warning only gives you an hour to prepare," said Paul Bellaire, program director in NSF's Division of Atmospheric Sciences, which funded the research. "That's the situation we're in now with space weather. Being able to determine the structure of the solar wind at its source -- the sun -- will give us the lead time we need to make space weather predictions truly useful."

By accurately simulating the behavior of the corona, scientists hope to predict when it will produce flares and CMEs, the same way the National Weather Service uses computer simulations of Earth's atmosphere to predict when it will produce thunderstorms or hurricanes.

The computer model was based on spacecraft observations of magnetic activity on the sun's surface, which affects and shapes the corona above it. The SAIC team released simulated "photographs" of the March 29 eclipse 13 days and again 5 days before the eclipse.

During a total solar eclipse, the moon blocks direct light coming from the sun, so the much fainter corona is visible, resembling a white, lacy veil surrounding the black disk of the moon. That is the only time the corona is visible from Earth without special instruments.

Because the corona is always changing, each eclipse looks different. The simulated photographs closely resembled actual photos of the eclipse, "providing reassurance that the model may be able to predict space weather events," said Mikic.

Previous simulations were based on simplified models, so the calculations could be completed in a reasonable time by computers available then. The new simulation is the first to base its calculations on the physics of how energy is transferred in the corona.

Even with today's powerful computers, the calculations required four days to complete on about 700 computer processors.

Source: National Science Foundation

Explore further: The riddle of galactic thin–thick disk solved

Related Stories

Building to begin on Solar Probe Plus spacecraft

Apr 09, 2015

NASA's Solar Probe Plus mission—which will fly closer to the sun than any spacecraft has before—reached a major milestone last month when it successfully completed its Critical Design Review, or CDR.

Sun experiences seasonal changes, new research finds

Apr 07, 2015

The Sun undergoes a type of seasonal variability with its activity waxing and waning over the course of nearly two years, according to a new study by a team of researchers led by the National Center for Atmospheric ...

Image: Giant filament seen on the sun

Feb 12, 2015

A dark, snaking line across the lower half of the sun in this Feb. 10, 2015 image from NASA's Solar Dynamics Observatory (SDO) shows a filament of solar material hovering above the sun's surface. SDO shows ...

Mission studies the Sun in soft X-rays

Mar 24, 2015

At any given moment, our sun emits a range of light waves far more expansive than what our eyes alone can see: from visible light to extreme ultraviolet to soft and hard X-rays. Different wavelengths can ...

The mystery of nanoflares

Mar 20, 2015

When you attach the prefix "nano" to something, it usually means "very small." Solar flares appear to be the exception.

Astronaut plus Proba minisats snap solar eclipse

Mar 20, 2015

As today's partial solar eclipse crossed Europe, it was also visible from space. ESA's Proba-2 captured a near-total eclipse from orbit, at the same time as its sister minisatellite Proba-V peered down to ...

Recommended for you

The riddle of galactic thin–thick disk solved

Apr 24, 2015

A long-standing puzzle regarding the nature of disk galaxies has finally been solved by a team of astronomers led by Ivan Minchev from the Leibniz Institute for Astrophysics Potsdam (AIP), using state-of-the-art ...

Giant cosmic tsunami wakes up comatose galaxies

Apr 24, 2015

Galaxies are often found in clusters, with many 'red and dead' neighbours that stopped forming stars in the distant past. Now an international team of astronomers, led by Andra Stroe of Leiden Observatory ...

Astronomers find runaway galaxies

Apr 23, 2015

We know of about two dozen runaway stars, and have even found one runaway star cluster escaping its galaxy forever. Now, astronomers have spotted 11 runaway galaxies that have been flung out of their homes ...

Celestial fireworks celebrate Hubble's 25th anniversary

Apr 23, 2015

The glittering tapestry of young stars flaring to life in this new NASA/ESA Hubble Space Telescope image aptly resembles an exploding shell in a fireworks display. This vibrant image of the star cluster Westerlund ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.