Global warming could accelerate from thawing Siberian permafrost

Jun 16, 2006

Permafrost soil blanketing northeastern Siberia contains about 75 times more carbon than is released by burning fossil fuels each year. That means it could become a potent, likely unstoppable contributor to global climate change if it continues to thaw. So conclude three scientists in a paper set to appear Friday in the journal Science.

“Unfortunately, it’s another large pool of carbon on the list that could move into the atmosphere with continued warming,” said co-author Ted Schuur, an assistant professor of ecology in the University of Florida botany department. “You start thawing the permafrost, microbes release carbon dioxide, that makes things warmer, more permafrost thaws and the process continues.”

The permafrost soil, which covers nearly 400,000 square miles of northeast Siberia and averages 82 feet in depth, contains about 500 billion metric tons of carbon, the scientists concluded. Cars, power plants and other fossil fuel consumers release at least 6 billion metric tons annually. If all the Siberian permafrost thawed, decomposed and released its carbon in the form of heat-trapping carbon dioxide, it could nearly double the 730 billion metric tons of carbon in the atmosphere presently — an outcome that would have huge warming impact.

Scientists have long known that permafrost, short for permanently frozen earth, contains carbon. But this latest research is the first to examine in detail the huge swath of permafrost soil blanketing northeast Siberia.

That soil is composed of layer upon layer of frozen windblown dust called loess. This dust fell from the air and accumulated as glaciers advanced and retreated over hundreds of thousands of years during the last ice ages

There are other similar regions around the world, including the Midwestern United States, that have loess soils. But what sets Siberia apart is that the dust is frozen in the permafrost, which trapped layer upon layer of roots and other organic matter that never decomposed. The authors showed that bacteria and fungi can eat this ancient carbon and release it as carbon dioxide to the atmosphere as soon as the soil thaws.

In a typical year in Siberia, plants and the surface soil thaw and become active in the summer, then refreeze in the winter. In ancient Siberia, as the dust accumulated, the deepest layer of previously thawed soil remained frozen in the summer. That’s because that year’s layer of dust effectively insulated the deepest soil.

“Every year, plants were growing new roots down into the soil, and then the new dust fell, and some deeper roots didn’t thaw out again – they become permanently frozen, and the process was repeated for thousands of years as this deep loess soil accumulated,” Schuur said, adding that preserved grass roots are readily visible in the ancient frozen soil.

In warmer regions, the usual process is for plants to die, decompose and return their carbon content to the atmosphere as carbon dioxide. When spring comes, new plant growth takes up this carbon dioxide by photosynthesis, producing oxygen. The process repeats itself, with the amount of carbon consumed roughly proportional to the amount of carbon produced.

Although this occurs in Siberia with the plants and surface soil, the result of the deepest organic matter staying frozen was a huge build-up of undecomposed, carbon-rich soil. This soil contains anywhere from 2 to 5 percent carbon –10 to 30 times more carbon than generally found in most deep mineral soils, according to the Science paper.

Equally significant, this soil appears to shed its carbon relatively quickly when thawed. Schuur collected loess samples and brought them to Florida from Siberia in their frozen state. In laboratory tests, he found that they produced carbon dioxide at rates roughly comparable to productive northern grassland soils as they thawed. Using carbon dating techniques, he also confirmed that the carbon dioxide was “old carbon” dating back tens of thousands of years.

Today, most loess remains frozen, but it is known to be thawing. Depending on how much thaws, the result could well be a rapid release of ancient carbon dioxide. “If these rates are sustained in the long term, as field observations suggest, then most carbon in recently thawed (loess) will be released within a century – a striking contrast to the preservation of carbon for tens of thousands of years when frozen in permafrost,” the Science paper says.

Schuur said the authors also found that thawing permafrost could have contributed to changing atmospheric carbon dioxide concentrations during past warming and cooling events in the earth’s history.

Source: by Aaron Hoover, University of Florida

Explore further: Study takes aim at mitigating the human impact on the Central Valley

add to favorites email to friend print save as pdf

Related Stories

SMAP almost ready to map frozen soil

Mar 16, 2015

Those who feel as though they've been living in the never-ending winter of the movie "Frozen" this year may be glad to hear that the spring thaw is now typically arriving up to two weeks earlier in the Northern ...

Characterizing permafrost microbes in a changing climate

Mar 04, 2015

In the effort to curb climate change by reducing global greenhouse gas (GHG) emissions, thawing permafrost poses a critical challenge. These reservoirs of frozen organic matter embedded in Arctic soils are ...

SMAP satellite extends 5-meter reflector boom

Feb 27, 2015

Like a cowboy at a rodeo, NASA's newest Earth-observing satellite, the Soil Moisture Active Passive (SMAP), has triumphantly raised its "arm" and unfurled a huge golden "lasso" (antenna) that it will soon ...

Image: The icy cap at Mars' south pole

Feb 10, 2015

Swirls of chocolate, caramel and cream – this image is definitely one to trigger sweet-toothed cravings. Smooth cream-coloured plateaus surrounded by cocoa-dusted ridges interspersed with caramel-hued streaks ...

Recommended for you

Climate fund signs up first partners

11 hours ago

The global fund created to spearhead climate change financing has selected its first partners to channel funds to developing countries, but says it needs donor nations to move fast in transforming cash pledges ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.