The Hitchhiker's Guide to Galaxy Formation

Jun 12, 2006
A computer simulation of the environment around a Population III star
A computer simulation of the environment around a Population III star. Image courtesy of Ralf Kaehler and Tom Abel.

One hundred million years after the Big Bang, giant primordial stars heated, ionized, and pushed the gas around them to form present-day stars and galaxies. And now, for the first time, we can see it happening—in a 3-D simulation.

"The stunning thing about the simulation is its resemblance to star-forming regions in our own galaxy, as seen from the Hubble telescope," says SLAC's Tom Abel, whose team at the Kavli Institute of Particle Astrophysics and Cosmology (KIPAC) developed the mathematical model for the simulation.

The dazzling images from the simulation take us back to a time when the first stars—massive twinklers millions of times brighter than the sun—lit up the universe. Scientists have long believed that these primordial "Population III" stars gave birth to galaxies, but until now they have lacked the tools to understand how it might have happened. Since these celestial events occurred far back in time, very little evidence is observable with telescopes.

Computer simulation is a promising substitute, but modeling the dynamic environment of a Population III star is a complex problem. The star would not only have heated and pushed the gas around it, but its radiation would have ionized the gas molecules, knocking off electrons and turning the molecules into charged ions. To model the complex interplay of these phenomena, the simulation has to solve a six-dimensional differential equation at hundreds of millions of points for each instant in time.

"Naïve methods will fail," Abel said.

Previous simulation methods made several simplifying assumptions—for instance, they assumed constant gas density around the star, or restricted themselves to a one-dimensional problem. While such simplifications made the problem tractable, they provided only limited insight into the underlying cosmic phenomena.

Abel's elegant alternative is to use a computer graphics technique, called adaptive raycasting, to model the outward spread of ionization from a star. Previous methods were computationally overwhelmed by trying to calculate everything on a uniform grid in space. Raycasting, in contrast, allows the computations to be tied to gas density—denser regions are analyzed with a finer grid, optimizing the calculations at any point in space. By combining adaptive raycasting with gas dynamics, Abel's algorithm captures the dynamic complexity of the cosmic churning that precedes star and galaxy formation.

Abel and colleagues, including KIPAC's John Wise and Columbia University's Greg Bryan, have started to use this technique to study the earliest events in the formation of galaxies.

"My long term goal is to build a galaxy, one star at a time," Abel says.

Source: Stanford Linear Accelerator Center, by Chandra Shekhar

Explore further: New space telescope concept could image objects at far higher resolution than Hubble

add to favorites email to friend print save as pdf

Related Stories

The cosmic chemistry that gave rise to water

3 hours ago

Earth's water has a mysterious past stretching back to the primordial clouds of gas that birthed the Sun and other stars. By using telescopes and computer simulations to study such star nurseries, researchers ...

Galactic 'hailstorm' in the early universe

Jan 16, 2015

Two teams of astronomers led by researchers at the University of Cambridge have looked back nearly 13 billion years, when the Universe was less than 10 percent its present age, to determine how quasars - ...

Decoding the gravitational evolution of dark matter halos

Jan 13, 2015

Researchers at Kavli IPMU and their collaborators have revealed that considering environmental effects such as a gravitational tidal force spread over a scale much larger than a galaxy cluster is indispensable ...

Recommended for you

Chandra celebrates the International Year of Light

Jan 23, 2015

The year of 2015 has been declared the International Year of Light (IYL) by the United Nations. Organizations, institutions, and individuals involved in the science and applications of light will be joining ...

Why is Andromeda coming toward us?

Jan 23, 2015

I don't want to alarm you, but there's a massive galaxy heading our way and will collide with us in a few billion years. But aren't most galaxies speeding away? Why is Andromeda on a collision course with ...

The cosmic chemistry that gave rise to water

Jan 22, 2015

Earth's water has a mysterious past stretching back to the primordial clouds of gas that birthed the Sun and other stars. By using telescopes and computer simulations to study such star nurseries, researchers ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.