Smashing young stars leave dwarfs in their wake

Jun 09, 2006
Smashing young stars leave dwarfs in their wake
Visualizations of brown dwarf simulations completed by Sijing Shen for her Master's Thesis (May 2006) under the supervision of James Wadsley.

Astronomers have discovered that the large disks of gas and dust around young stars will fragment if two young stars pass close to each other and form smaller brown dwarfs stars with disks of their own.

The news was announced this week at the Canadian Astronomical Society in Calgary, Alta, by James Wadsley, assistant professor of Physics & Astronomy at McMaster University, and his student Sijing Shen.

"This is an exciting discovery because it may be the dominant way brown dwarfs are made," says Wadsley. "The challenge to theorists was to explain not only the origin of brown dwarfs but also the details telescopes are seeing: brown dwarfs with disks and the systems of many dwarfs orbiting a single regular star. We've done that."

Brown dwarf stars are as common in number as large stars but are no more than 8 percent of the mass of the Sun. Their low mass prevents nuclear fusion in their core so they don't shine like regular stars. Regular stars form from cold dense cores in giant molecular gas clouds. The natural mass of a core is expected to be large, closer to that of a regular star than a brown dwarf so something extra was required to understand the origin of brown dwarfs.

Using SHARCNET (Shared Hierarchical Academic Research Computing Network) parallel computing facilities at McMaster, Shen and Wadsley simulated several encounters between young stars with disks at unprecedented resolution, seeing gas pile-ups, drawn-out tidal arms and huge masses of gas driven closer to the stars. Amid this chaos several small objects were seen to form, from Jupiter-sized objects up to brown dwarfs. Reports from lower resolution simulations by other groups had shown no indication of disks. However, in every case, the new objects had disks with sizes ranging up to 18 astronomical units (the size of Saturn's orbit). As these rapidly spinning disks evolve they should produce jets of gas and even result in the formation of planets orbiting the brown dwarfs. Both these things have been observed in nature.

"We had no idea the simulated results would be so beautiful and complex, and then we found out that observations were revealing brown dwarfs with disks that matched what we were seeing, " said Shen, who is studying for her PhD in Physics & Astronomy at McMaster.

The simulated objects would either leave the stars on their own or in groups, or remain as multiple brown dwarf companions to a star. Telescopes have detected up to three brown dwarfs orbiting a regular star. Thus the brown dwarfs and planets in the simulations are remarkably similar to what is observed. However, it remains to be determined exactly how often such encounters occur in nature and what fraction of those encounters reliably produce brown dwarfs. For this, Shen and Wadsley are planning a much larger set of encounter simulations using SHARCNET's new supercomputers.

Source: McMaster University

Explore further: Planets with oddball orbits like Mercury could host life

add to favorites email to friend print save as pdf

Related Stories

Drawing the line between stars and brown dwarfs

Dec 10, 2013

(Phys.org) —Stars come in a tremendous size range, from many tens of times bigger than the Sun to a tiny fraction of its size. But the answer to just how small an astronomical body can be, and still be ...

Recommended for you

The entropy of black holes

Sep 12, 2014

Yesterday I talked about black hole thermodynamics, specifically how you can write the laws of thermodynamics as laws about black holes. Central to the idea of thermodynamics is the property of entropy, which c ...

Modified theory of dark matter

Sep 12, 2014

Dark matter is an aspect of the universe we still don't fully understand. We have lots of evidence pointing to its existence (as I outlined in a series of posts a while back), and the best evidence we have point ...

Gaia discovers its first supernova

Sep 12, 2014

(Phys.org) —While scanning the sky to measure the positions and movements of stars in our Galaxy, Gaia has discovered its first stellar explosion in another galaxy far, far away.

Astronomers unveil secrets of giant elliptical galaxies

Sep 12, 2014

New findings of how giant elliptical galaxies move have been discovered by an international team of astronomers using the newly installed Multi Unit Spectroscopic Explorer (MUSE) at the European Southern Observatory's (ESO) ...

User comments : 0