Growing Glowing Nanowires to Light Up the Nanoworld

May 25, 2006
Growing Glowing Nanowires to Light Up the Nanoworld
NIST "grows" semiconductor nanowires that emit ultraviolet light as part of a project to make prototype nano-lasers and other devices and the measurement tools needed to characterize them. Electron micrograph shows the gallium nitride wires growing on a silicon substrate (color added for contrast.) Credit: Lorelle Mansfield/NIST

The nano world is getting brighter. Nanowires made of semiconductor materials are being used to make prototype lasers and light-emitting diodes with emission apertures roughly 100 nm in diameter—about 50 times narrower than conventional counterparts. Nanolight sources may have many applications, including “lab on a chip” devices for identifying chemicals and biological agents, scanning-probe microscope tips for imaging objects smaller than is currently possible, or ultra-precise tools for laser surgery and electronics manufacturing.

Researchers at the National Institute of Standards and Technology (NIST) are growing nanowires made of gallium nitride alloys and making prototype devices and nanometrology tools. The wires are grown under high vacuum by depositing atoms layer by layer on a silicon crystal.

NIST is one of few laboratories capable of growing such semiconductor nanowires without using metal catalysts, an approach believed to enhance luminescence and flexibility in crystal design. The wires are generally between 30 and 500 nanometers in diameter and up to 12 micrometers long. When excited with a laser or electric current, the wires emit an intense glow in the ultraviolet or visible parts of the spectrum, depending on the alloy composition.

A paper in the May 22 issue of Applied Physics Letters* reports that individual nanowires grown at NIST produce sufficiently intense light to enable reliable room-temperature measurements of their important characteristics. For example, the peak wavelength of light emitted with electric field parallel to the long axis of a nanowire is shifted with respect to the peak wavelength emitted with electric field perpendicular to the wire. Such differences in emission are used to characterize the nanowire materials and also may be exploited to make sensors and other devices.

NIST has grown a variety of nanowires and extensively characterized their structural and optical properties, finding few defects, strains or impurities, which results in high light output compared to the bulk material.** The wires also can be transferred from the silicon crystal to other substrates, such as sapphire, and arranged using electric fields. The NIST team has used the nanowires to make a number of prototype devices, including light-emitting diodes, field-effect transistors, and nanowire “bridge” structures that may be useful in sensors and nanoscale mechanical resonators.

*J.B. Schlager, N.A. Sanford, K.A. Bertness, J.M. Barker, A. Roshko and P.T. Blanchard. 2006. Polarization-resolved photoluminescence study of individual GaN nanowires grown by catalyst-free MBE. Applied Physics Letters. May 22.

** K.A. Bertness, N.A. Sanford, J.M. Barker, J.B. Schlager, A. Roshko, A.V. Davydov and I. Levin. 2006. Catalyst-Free Growth of GaN Nanowires. Journal of Electronic Materials 35, 576. April.

Source: NIST

Explore further: Team finds electricity can be generated by dragging saltwater over graphene

add to favorites email to friend print save as pdf

Related Stories

Bright future for gaN nanowires

Nov 29, 2011

The gallium nitride nanowires grown by PML scientists may only be a few tenths of a micrometer in diameter, but they promise a very wide range of applications, from new light-emitting diodes and diode lasers ...

'Nanowire' measurements could improve computer memory

May 19, 2011

( -- A recent study at the National Institute of Standards and Technology may have revealed the optimal characteristics for a new type of computer memory now under development. The work, performed ...

Recommended for you

First direct observations of excitons in motion achieved

Apr 16, 2014

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton ...

User comments : 0

More news stories

Thinnest feasible nano-membrane produced

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

Wiring up carbon-based electronics

Carbon-based nanostructures such as nanotubes, graphene sheets, and nanoribbons are unique building blocks showing versatile nanomechanical and nanoelectronic properties. These materials which are ordered ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Hackathon team's GoogolPlex gives Siri extra powers

( —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...