Researchers make hurricane predictions more accurate

May 24, 2006
Hurricanes

The hurricane forecasting model developed by University of Rhode Island and NOAA scientists – the most accurate model used by the National Hurricane Center over the last three years – has been improved for the 2006 hurricane season to incorporate the phenomenon responsible for intensifying Hurricanes Katrina and Rita last year.

According to URI Oceanography Professor Isaac Ginis, the northward extension of the Loop Current, which separates the waters of the Gulf of Mexico from the Caribbean Sea, was the most likely reason that Katrina and Rita intensified to category 5 hurricanes.

“The most important factor in forecasting hurricanes is water temperature. At the surface, the water temperatures in the Gulf and Caribbean are quite similar,” explained Ginis, “but the warm surface layer extends much deeper in the Caribbean than in the Gulf, which is why category 5 hurricanes are much more common in the Caribbean.”

When the Loop Current extends northward into the Gulf of Mexico, the deep warm waters of the Caribbean go with it, Ginis said. When a hurricane tracks along that northward extension -- as Katrina and Rita did -- it can intensify considerably.

The Loop Current extends northward in a regular cycle about every nine months. “Katrina and Rita were the perfect storms because they occurred during this coincidence of atmospheric and oceanic phenomenon,” Ginis said. “And they also intensified to category 5 storms at the same place in the Gulf. That’s more than just a coincidence.

“Hurricane Camille in 1969 probably also intensified to category 5 because the Loop Current extended north,” he added.

The model developed by Ginis and his research group, which factors in the effect of the ocean on hurricanes, is coupled with an atmospheric model created by the NOAA Geophysical Fluid Dynamics Laboratory. The improved model for 2006 is the first to incorporate the position of the Loop Current when forecasting hurricane intensity.

Ginis was the first scientist to demonstrate the significant role the ocean plays in the formation, path and intensity of hurricanes. Using data collected from aircraft, satellites and ocean buoys, his models have significantly improved hurricane predictions in the Atlantic Ocean and Gulf of Mexico in the last five years.

In addition to factoring in the position of the Loop Current in his 2006 model, Ginis and his colleagues have made other improvements. By studying the friction that occurs at the boundary of the air and the ocean, the scientists have improved understanding of the interaction between the ocean’s surface and hurricane winds.

“Surface waves create friction or drag which has the effect of slowing the wind speed near the surface,” explained Ginis. “We used to think that when stronger winds created higher waves, the drag would increase. But it turns out that’s not true. When winds reach about 75 miles per hour and higher, the hurricane seems to just skim across the top of the waves and isn’t impacted by the surface roughness of the waves.”

Source: University of Rhode Island

Explore further: Tropical depression 21W forms, Philippines under warnings

add to favorites email to friend print save as pdf

Related Stories

LiquidPiston unveils quiet X Mini engine prototype

3 hours ago

LiquidPiston has a new X Mini engine which is a small 70 cubic centimeter gasoline powered "prototype. This is a quiet, four-stroke engine with near-zero vibration. The company said it can bring improvements ...

Rare new species of plant: Stachys caroliniana

3 hours ago

The exclusive club of explorers who have discovered a rare new species of life isn't restricted to globetrotters traveling to remote locations like the Amazon rainforests, Madagascar or the woodlands of the ...

New terahertz device could strengthen security

4 hours ago

We are all familiar with the hassles that accompany air travel. We shuffle through long lines, remove our shoes, and carry liquids in regulation-sized tubes. And even after all the effort, we still wonder if these procedures ...

European space plane set for February launch

4 hours ago

Europe's first-ever "space plane" will be launched on February 11 next year, rocket firm Arianespace said Friday after a three-month delay to fine-tune the mission flight plan.

Recommended for you

Better forecasts for sea ice under climate change

22 hours ago

University of Adelaide-led research will help pinpoint the impact of waves on sea ice, which is vulnerable to climate change, particularly in the Arctic where it is rapidly retreating.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.