Novel magnetic semiconductor puts new spin on electronics

May 24, 2006

Researchers at MIT's Francis Bitter Magnet Lab have developed a novel magnetic semiconductor that may greatly increase the computing power and flexibility of future electronic devices while dramatically reducing their power consumption. The work was reported in the April issue of Nature Materials.

The new material is a significant step forward in the field of spin-based electronics -- or "spintronics" -- where the spin state of electrons is exploited to carry, manipulate and store information. Conventional electronic circuits use only the charge state (current on or off) of an electron, but these tiny particles also have a spin direction (up or down).

Devices such as laptops and iPods already employ spintronics to store information in their super-high-capacity magnetic hard drives, but using electron spin states to process information through circuits would be a dramatic advance in computing. "We can carry information in two ways at once, and this will allow us to further reduce the size of electronic circuits," says Jagadeesh Moodera, a senior research scientist at the Magnet Lab and leader of the research team. Today's circuits carry information by varying the on/off state of current passed through electrons. Those same electrons could carry additional information through their spin orientation.

The magnetic semiconductor material created by Moodera's team is indium oxide with a small amount of chromium added. It sits on top of a conventional silicon semiconductor, where it injects electrons of a given spin orientation into the semiconductor. The spin-polarized electrons then travel through the semiconductor and are read by a spin detector at the other end of the circuit.

Although the new material is promising in itself, Moodera says the real breakthrough is their demonstration that the material's magnetic behavior depends on defects, or missing atoms (vacancies), in a periodic arrangement of atoms. This cause-and-effect relationship was uncertain before, but Moodera's team was able to tune the material's magnetic behavior over a wide range by controlling defects at the atomic level.

"This is what has been missing all along," he says. "The beauty of it is that our work not only shows this magnetic semiconductor is real, but also technologically very useful."

The new material's ability to inject spin at room temperature and its compatibility with silicon make it particularly useful. Its optical transparency means it also could find applications in solar cells and touch panel circuitry, according to Moodera.

In addition to reducing circuit size, spintronics could create more versatile devices because electron spins can be changed reversibly (from up to down and vice versa) along circuits using an electrode gate. "We currently have multifunctional cellphones, for example, that act as phones, cameras and music players," says Moodera. "Spintronics could create even greater multifunctionality in the future."

Spintronics may also reduce the power consumption of information devices. Spin states are considered "nonvolatile," meaning they retain stored information even when the power is switched off -- this is why magnetic hard drives hold information without power. Spin electronics could create circuits that operate similarly, storing and passing information without the need for a continuous current to retain the data. "In such a system, we can transmit spin information without moving charges," says Moodera. "It's like creating a ripple in a pond -- it travels all the way across without adding more energy."

Source: Massachusetts Institute of Technology

Explore further: New research predicts when, how materials will act

add to favorites email to friend print save as pdf

Related Stories

Researchers test radiation-resistant spintronic material

Feb 17, 2015

A team of researchers from the University of Michigan and Western Michigan University is exploring new materials that could yield higher computational speeds and lower power consumption, even in harsh environments.

The ages of sun-like stars

Feb 06, 2015

The mass of a star is perhaps its most significant feature. It determines how brightly it shines (a star ten times more massive than the Sun will, during its normal lifetime, shine about forty million times ...

Dance of the nanovortices

Feb 02, 2015

It is a familiar phenomenon: if a spinning top is bumped or is set in rotation on an inclined surface, it usually does not move in a straight line, but instead scribes a series of small arches. Researchers ...

Recommended for you

New filter could advance terahertz data transmission

2 hours ago

University of Utah engineers have discovered a new approach for designing filters capable of separating different frequencies in the terahertz spectrum, the next generation of communications bandwidth that ...

The super-resolution revolution

2 hours ago

Cambridge scientists are part of a resolution revolution. Building powerful instruments that shatter the physical limits of optical microscopy, they are beginning to watch molecular processes as they happen, ...

Precision gas sensor could fit on a chip

3 hours ago

Using their expertise in silicon optics, Cornell engineers have miniaturized a light source in the elusive mid-infrared (mid-IR) spectrum, effectively squeezing the capabilities of a large, tabletop laser onto a 1-millimeter ...

A new X-ray microscope for nanoscale imaging

5 hours ago

Delivering the capability to image nanostructures and chemical reactions down to nanometer resolution requires a new class of x-ray microscope that can perform precision microscopy experiments using ultra-bright ...

New research signals big future for quantum radar

16 hours ago

A prototype quantum radar that has the potential to detect objects which are invisible to conventional systems has been developed by an international research team led by a quantum information scientist at the University ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.