A Quantum CPU: the Pentium Q?

May 23, 2006

A new design scheme for a quantum processor core makes potential quantum computers more technically feasible, more efficient, and in many cases faster by keeping all of the quantum bits active all the time, rather than switching them off and on as in most quantum computer designs.

Typical computers store and manipulate information as bits - that is 0's and 1's. Quantum computers are made of quantum bits, or qubits, that are encoded as a superposition of the values 0 and 1 at the same time. In addition, quantum mechanics allows qubits to become entangled, which smears information out among multiple qubits.

Previous schemes for making a quantum computer have sought to harness this process by keeping qubits under strict control - only letting them communicate with each other occasionally. But such tight constraints are hard to achieve in the lab, and experimental progress has been slow.

The new idea shows that researchers don't need to be so controlling. Instead they can assemble a processor core where qubits are active all the time, continuously and freely talking with all their neighbors. The whole core becomes entangled and the qubits record and manipulate data as a group. The key to making the new design work is a separate storage bank of qubits that swap information in and out of the quantum processor core.

Although the new design should be easier to implement than other quantum computer layouts, the always-on processor core has yet to be realized in the lab. When researchers iron out all the difficulties, quantum computers - based either on the quantum processor core or other designs - will outperform their classical counterparts in a variety of calculations such as simulations of problems that are inherently quantum mechanical (including many nanoscopic, molecular, and biophysical problems, to name a few). They would also be good at factoring large numbers and tackling other mathematical problems that would take eons for even the most powerful classical computers imaginable to solve.

Citation: M-H Yung et al., Physical Review Letters (upcoming article)

Source: American Physical Society

Explore further: Seeking 'absolute zero', copper cube gets chillingly close

add to favorites email to friend print save as pdf

Related Stories

Putting the squeeze on quantum information

Sep 25, 2014

Canadian Institute for Advanced Research researchers have shown that information stored in quantum bits can be exponentially compressed without losing information. The achievement is an important proof of principle, and could ...

Recommended for you

Backpack physics: Smaller hikers carry heavier loads

15 hours ago

Hikers are generally advised that the weight of the packs they carry should correspond to their own size, with smaller individuals carrying lighter loads. Although petite backpackers might appreciate the ...

Extremely high-resolution magnetic resonance imaging

16 hours ago

For the first time, researchers have succeeded to detect a single hydrogen atom using magnetic resonance imaging, which signifies a huge increase in the technology's spatial resolution. In the future, single-atom ...

'Attosecond' science breakthrough

17 hours ago

Scientists from Queen's University Belfast have been involved in a groundbreaking discovery in the area of experimental physics that has implications for understanding how radiotherapy kills cancer cells, among other things.

User comments : 0