A Quantum CPU: the Pentium Q?

May 23, 2006

A new design scheme for a quantum processor core makes potential quantum computers more technically feasible, more efficient, and in many cases faster by keeping all of the quantum bits active all the time, rather than switching them off and on as in most quantum computer designs.

Typical computers store and manipulate information as bits - that is 0's and 1's. Quantum computers are made of quantum bits, or qubits, that are encoded as a superposition of the values 0 and 1 at the same time. In addition, quantum mechanics allows qubits to become entangled, which smears information out among multiple qubits.

Previous schemes for making a quantum computer have sought to harness this process by keeping qubits under strict control - only letting them communicate with each other occasionally. But such tight constraints are hard to achieve in the lab, and experimental progress has been slow.

The new idea shows that researchers don't need to be so controlling. Instead they can assemble a processor core where qubits are active all the time, continuously and freely talking with all their neighbors. The whole core becomes entangled and the qubits record and manipulate data as a group. The key to making the new design work is a separate storage bank of qubits that swap information in and out of the quantum processor core.

Although the new design should be easier to implement than other quantum computer layouts, the always-on processor core has yet to be realized in the lab. When researchers iron out all the difficulties, quantum computers - based either on the quantum processor core or other designs - will outperform their classical counterparts in a variety of calculations such as simulations of problems that are inherently quantum mechanical (including many nanoscopic, molecular, and biophysical problems, to name a few). They would also be good at factoring large numbers and tackling other mathematical problems that would take eons for even the most powerful classical computers imaginable to solve.

Citation: M-H Yung et al., Physical Review Letters (upcoming article)

Source: American Physical Society

Explore further: Breakthrough in OLED technology

add to favorites email to friend print save as pdf

Related Stories

Physicists find a new form of quantum friction

Feb 26, 2015

Physicists at Yale University have observed a new form of quantum friction that could serve as a basis for robust information storage in quantum computers in the future. The researchers are building upon ...

Quantum mechanical behaviour at the macroscale

Feb 06, 2015

Most quantum physics research to date has used particles such as atoms and electrons to observe quantum mechanical behaviour. Professor Mika Sillanpää of Aalto University is now working in the relatively new field of using ...

Recommended for you

Giant virus revealed in 3-D using X-ray laser

2 hours ago

For the first time, researchers have produced a 3-D image revealing part of the inner structure of an intact, infectious virus, using a unique X-ray laser at the Department of Energy's SLAC National Accelerator ...

Magnetic vortices in nanodisks reveal information

3 hours ago

Researchers at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) and Forschungszentrum Jülich (FZJ) together with a colleague at the French Centre National de la Recherche Scientifique (CNRS) in Strasbourg ...

Breakthrough in OLED technology

21 hours ago

Organic light emitting diodes (OLEDs), which are made from carbon-containing materials, have the potential to revolutionize future display technologies, making low-power displays so thin they'll wrap or fold ...

Throwing light on a mysterious human 'superpower'

Mar 02, 2015

Most people, at some point in their lives, have dreamt of being able to fly like Superman or develop superhuman strength like the Hulk. But very few know that we human beings have a "superpower" of our own, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.