Reinforced racquets and heated wallpaper

May 18, 2006
Reinforced racquets and heated wallpaper
The tennis racquet with carbon nanotube inserts is particularly stress-resistant and shock-absorbent. © Fraunhofer TEG

Extremely conductive, stronger than steel and lighter than aluminum – these are only a few of the amazing properties of carbon nanotubes. An innovative method now enables the "miracle material" to be processed on an industrial scale.

Ever since they were first discovered in 1991, carbon nanotubes (CNTs) have inspired the imagination of scientists and entrepreneurs alike. They are extremely conductive, robust and lightweight. While it is meanwhile no longer difficult to manufacture nanotubes as a raw material, there are still hardly any finished products, for the material has a serious drawback: CNTs do not bind readily with other materials and stubbornly resist incorporation in the majority of production processes.

Engineers at the Fraunhofer Technology Development Group TEG in Stuttgart have at last devised a method that enables the eccentric material to be processed at low cost. Industrial mass production is possible at last. Among the first products to contain semi-finished CNT products from the TEG are the Völkl DNX tennis racquets. They have proved an outstanding success: the original plan was to manufacture 90,000 racquets, but they are selling so fast that production will probably be ramped up. "Carbon nanotubes are used to reinforce the frame at the points subjected to the greatest stress and improve the racquet's ability to absorb shocks", explains project manager Ivica Kolaric.

Kolaric and his team at the Stuttgart CNT applications laboratory are currently producing their semi-finished CNT products in paper form. The sheets look like black art paper and cost just a few euros per square meter. "We are not tied to any particular shape, though", stresses Kolaric. The CNT composite system can be mixed with many different materials and combines just as easily with plastics as with textiles. Reinforced tennis racquets are only one of many potential applications.

The researcher believes that the greatest potential for creating new products at the present time lies in harnessing the electrical properties of nanotubes to generate heat. The material is not only extremely light and robust, but can also very efficiently heat up surfaces of any size. In their various experimental applications for CNTs, the Stuttgart engineers have embedded them in kidney belts or used them to de-ice mirrors, achieving a high degree of efficiency. "The potential applications are virtually unlimited – they range from electric blankets and heatable aircraft wings that no longer ice up, through to wallpaper heating for cold walls", claims Kolaric.

Source: Fraunhofer-Gesellschaft

Explore further: Scientists improve microscopic batteries with homebuilt imaging analysis

add to favorites email to friend print save as pdf

Related Stories

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

Kateeva coating could finally give us bendable displays

Aug 15, 2014

A new startup based in Menlo Park, California called Kateeva might have solved one of the problems that is keeping manufacturers from selling us portable devices with bendable displays. They've developed ...

Used-cigarette butts offer energy storage solution

Aug 05, 2014

A group of scientists from South Korea have converted used-cigarette butts into a high-performing material that could be integrated into computers, handheld devices, electrical vehicles and wind turbines ...

Recommended for you

Solar cell compound probed under pressure

Sep 25, 2014

Gallium arsenide, GaAs, a semiconductor composed of gallium and arsenic is well known to have physical properties that promise practical applications. In the form of nanowires and nanoparticles, it has particular ...

User comments : 0