New technology will allow for flexible television and computer screens

May 11, 2006

Organic light emitting diodes (OLED) are the technology used in making light emitting fabrics used in cell phones and televisions. The fabrication of flexible OLEDs has up to now been held back by the fragility of the brittle indium tin oxide layer that serves as the transparent electrode. But researchers at the Regroupement Québecois sur les Matériaux de Pointe (RQMP) have found a solution which they published in the May online issue of Applied Physics Letters.

"Organic light emitting diodes have in recent years emerged as a promising low cost technology for making large area flat panel displays and flexible light emitting fabrics," explains Richard Martel, professor at the Université de Montréal's chemistry department. "By using carbon nanotubes, a highly conductive and flexible tube shaped carbon nanostructure, thin sheets a few tens of nanometers in thickness can be fabricated following a procedure akin to making paper. These sheets preserve the conductivity and flexibility of the carbon nanotubes and are thin enough to be highly transparent."

By following the fabrication procedure they developed, the researchers succeeded in producing a high-performance OLED on this new electrode material. In their work they also outline the parameters that can be further optimized in order improve the performance of their design. "In addition to their flexibility, carbon nanotube sheets exhibit a number of properties that make them an attractive alternative to transparent conducting oxides for display and lighting applications," says Carla Aguirre, a researcher at the École Polytechnique affiliated with the Université de Montréal. "By applying the appropriate chemical treatment they can in principle be also made to replace the metal electrode in order to make OLEDs that emit light from both sides."

The potential market applications of this technology are many. From rolled-up computer screens to light emitting clothes, this technology will find many uses.

The research Group included: Carla Aguirre and Patrick Desjardins from École Polytechnique, Stéphane Auvray and Richard Martel from Université de Montréal, S. Pigeon from OLA Display Corporation and R. Izquierdo from Université du Québec à Montréal.

Source: University of Montreal

Explore further: Controlling core switching in Pac-man disks

add to favorites email to friend print save as pdf

Related Stories

NASA's spaceborne carbon counter maps new details

Dec 19, 2014

The first global maps of atmospheric carbon dioxide from NASA's new Orbiting Carbon Observatory-2 mission demonstrate its performance and promise, showing elevated carbon dioxide concentrations across the ...

Unraveling the light of fireflies

Dec 17, 2014

How do fireflies produce those mesmerizing light flashes? Using cutting-edge imaging techniques, scientists from Switzerland and Taiwan have unraveled the firefly's intricate light-producing system for the ...

Key to longevity of imperial Roman monuments

Dec 16, 2014

No visit to Rome is complete without a visit to the Pantheon, Trajan's Markets, the Colosseum, or the other spectacular examples of ancient Roman concrete monuments that have stood the test of time and the ...

Recommended for you

Controlling core switching in Pac-man disks

19 hours ago

Magnetic vortices in thin films can encode information in the perpendicular magnetization pointing up or down relative to the vortex core. These binary states could be useful for non-volatile data storage ...

Atoms queue up for quantum computer networks

19 hours ago

In order to develop future quantum computer networks, it is necessary to hold a known number of atoms and read them without them disappearing. To do this, researchers from the Niels Bohr Institute have developed ...

New video supports radiation dosimetry audits

Dec 23, 2014

The National Physical Laboratory (NPL), working with the National Radiotherapy Trials Quality Assurance Group, has produced a video guide to support physicists participating in radiation dosimetry audits.

Acoustic tweezers manipulate cell-to-cell contact

Dec 22, 2014

Sound waves can precisely position groups of cells for study without the danger of changing or damaging the cells, according to a team of Penn State researchers who are using surface acoustic waves to manipulate ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.