New technology will allow for flexible television and computer screens

May 11, 2006

Organic light emitting diodes (OLED) are the technology used in making light emitting fabrics used in cell phones and televisions. The fabrication of flexible OLEDs has up to now been held back by the fragility of the brittle indium tin oxide layer that serves as the transparent electrode. But researchers at the Regroupement Québecois sur les Matériaux de Pointe (RQMP) have found a solution which they published in the May online issue of Applied Physics Letters.

"Organic light emitting diodes have in recent years emerged as a promising low cost technology for making large area flat panel displays and flexible light emitting fabrics," explains Richard Martel, professor at the Université de Montréal's chemistry department. "By using carbon nanotubes, a highly conductive and flexible tube shaped carbon nanostructure, thin sheets a few tens of nanometers in thickness can be fabricated following a procedure akin to making paper. These sheets preserve the conductivity and flexibility of the carbon nanotubes and are thin enough to be highly transparent."

By following the fabrication procedure they developed, the researchers succeeded in producing a high-performance OLED on this new electrode material. In their work they also outline the parameters that can be further optimized in order improve the performance of their design. "In addition to their flexibility, carbon nanotube sheets exhibit a number of properties that make them an attractive alternative to transparent conducting oxides for display and lighting applications," says Carla Aguirre, a researcher at the École Polytechnique affiliated with the Université de Montréal. "By applying the appropriate chemical treatment they can in principle be also made to replace the metal electrode in order to make OLEDs that emit light from both sides."

The potential market applications of this technology are many. From rolled-up computer screens to light emitting clothes, this technology will find many uses.

The research Group included: Carla Aguirre and Patrick Desjardins from École Polytechnique, Stéphane Auvray and Richard Martel from Université de Montréal, S. Pigeon from OLA Display Corporation and R. Izquierdo from Université du Québec à Montréal.

Source: University of Montreal

Explore further: IHEP in China has ambitions for Higgs factory

add to favorites email to friend print save as pdf

Related Stories

Toward ultimate light efficiency on the cheap

Jul 16, 2014

(Phys.org) —Researchers at the University of Michigan have taken a major stride toward perfectly efficient lighting that is also relatively inexpensive and simple to make. The same material can also reveal ...

Nanophotonics experts create powerful molecular sensor

Jul 15, 2014

(Phys.org) —Nanophotonics experts at Rice University have created a unique sensor that amplifies the optical signature of molecules by about 100 billion times. Newly published tests found the device could ...

Laser physics upside down

Jul 15, 2014

At the Vienna University of Technology a system of coupled lasers has been created which exhibits truly paradoxical behaviour: An increase in energy supply switches the lasers off, reducing the energy can ...

Recommended for you

Nike krypton laser achieves spot in Guinness World Records

52 minutes ago

A set of experiments conducted on the Nike krypton fluoride (KrF) laser at the U.S. Naval Research Laboratory (NRL) nearly five years ago has, at long last, earned the coveted Guinness World Records title for achieving "Highest ...

Chemist develops X-ray vision for quality assurance

5 hours ago

It is seldom sufficient to read the declaration of contents if you need to know precisely what substances a product contains. In fact, to do this you need to be a highly skilled chemist or to have genuine ...

The future of ultrashort laser pulses

5 hours ago

Rapid advances in techniques for the creation of ultra-short laser pulses promise to boost our knowledge of electron motions to an unprecedented level.

IHEP in China has ambitions for Higgs factory

22 hours ago

Who will lay claim to having the world's largest particle smasher?. Could China become the collider capital of the world? Questions tease answers, following a news story in Nature on Tuesday. Proposals for ...

The physics of lead guitar playing

Jul 23, 2014

String bends, tapping, vibrato and whammy bars are all techniques that add to the distinctiveness of a lead guitarist's sound, whether it's Clapton, Hendrix, or BB King.

User comments : 0