Nanoparticles Improve Ultrasound Sensitivity for Cancer Detection

May 08, 2006

Targeted nanoparticles may eventually help physicians detect the very earliest stages of cancer using readily available ultrasound equipment, a new study from investigators at The Ohio State University suggests. The results of this study, published in the journal Physics in Medicine and Biology, show that silica nanoparticles have a marked effect on boosting reflection of ultrasonic energy as it passes through the body.

In laboratory experiments on mice, scientists found that silica nanoparticles injected into the animals improved the resulting images. This study is one of the first reports showing that ultrasound can detect these tiny particles when they are inside the body, said Thomas Rosol, D.V.M., Ph.D., who along with Jun Liu, Ph.D., led the research team.

“Given their tiny size, nobody thought it would be possible for ultrasound to detect nanoparticles,” he said.

It turns out that not only can ultrasound waves sense nanoparticles, but the particles can brighten the resulting image. One day, those bright spots may indicate that a few cells in the area may be on the verge of mutating and growing out of control.

“The long-term goal is to use this technology to improve our ability to identify very early cancers and other diseases,” said Liu. “We ultimately want to identify disease at its cellular level, at its very earliest stage.”

Rosol said that Liu and her team are working on creating biodegradable nanoparticles. For the purposes of this study, however, the researchers wanted to use a hard substance, silica, to see if their idea would work. The strongest ultrasound signals are those produced when sound waves bounce off a hard surface. While not biodegradable, the nanoparticles used in the study were biologically inert.

The researchers took ultrasound images of the animals' livers every five minutes for 90 minutes after the injection. The nanoparticles had accumulated in the animals' livers. Another future step for this work is to label nanoparticles tumor-targeting molecules.

“The liver takes up foreign substances in the body, so it's not surprising that that's where we saw the particles,” Rosol said. “But we ultimately want to be able to make these particles go to the mammary glands or other tissues we're interested in.”

The ultrasound images grew brighter over the 90-minute period. The researchers compared these images to those from a group of control mice injected with a saline solution. There was no change in ultrasound image brightness in the control mice after that injection.

This work, which was supported in part by the National Cancer Institute, is detailed in a paper titled, “Nanoparticles as image enhancing agents for ultrasonography.” An abstract of this paper is available through PubMed.

Source: National Cancer Institute

Explore further: Nano-scale gold particles are good candidates for drug delivery

add to favorites email to friend print save as pdf

Related Stories

Image: Chandra's view of the Tycho Supernova remnant

1 hour ago

More than four centuries after Danish astronomer Tycho Brahe first observed the supernova that bears his name, the supernova remnant it created is now a bright source of X-rays. The supersonic expansion of ...

Recommended for you

Graphene surfaces on photonic racetracks

15 hours ago

In an article published in Optics Express, scientists from The University of Manchester describe how graphene can be wrapped around a silicon wire, or waveguide, and modify the transmission of light through it.

Simulating the invisible

16 hours ago

Panagiotis Grammatikopoulos in the OIST Nanoparticles by Design Unit simulates the interactions of particles that are too small to see, and too complicated to visualize. In order to study the particles' behavior, he uses ...

Building 'invisible' materials with light

17 hours ago

A new method of building materials using light, developed by researchers at the University of Cambridge, could one day enable technologies that are often considered the realm of science fiction, such as invisibility ...

User comments : 0