Extensional tectonics in Tempe Terra

May 08, 2006
Extensional tectonics in Tempe Terra
Extensional tectonics in Tempe Terra.

These images, taken by the High Resolution Stereo Camera (HRSC) on board ESA's Mars Express spacecraft, show the tectonic 'grabens' in Tempe Terra, a geologically complex region that is part of the old Martian highlands.

The HRSC obtained these images during orbit 1180 on 19 December 2004 with a ground resolution of approximately 16.5 metres per pixel. The data were acquired in the region of Northern Olympus Mons, at approximately 48.5° North and 288.4° East.
The Tempe Terra region of Mars displays a complex geologic history; the images were taken just west of the Barabashov crater and cover the transition zone between the old Martian highlands to the south and the geologically younger northern lowlands.

The context map is centred on the region of Mareotis Fossae showing numerous parallel grabens, or depressed blocks of land bordered by parallel faults, running in a Northeast-Southwest orientation. These appear in more detail in the south (left) of the camera images.

Tectonic processes (extensional stresses, in this case) have led to the development of these grabens. After the tectonic activity, other processes reshaped the landscape. In the scene, the results of weathering and mass transport can be seen. Due to erosion, the surface has been smoothed, giving formerly sharp edges a rounded appearance. Such terrain is called "fretted terrain" and is characteristic for the transition of highland to lowland.

The valleys and grabens are 5 to 10 kilometres wide and up to 1500 metres deep. Along the graben flanks, the layering of the bedrock is exposed. The lineations on the valley floors are attributed to a slow viscous movement of material, presumably in connection with ice. These lineations and indications of possible ice underneath the surface lead scientists to assume that the structures are rock glaciers or similar phenomena known from alpine regions on Earth.

The stereo and colour capabilities, and the high-resolution coverage of extended areas, provided by the HRSC camera allow for improved study of the complex geologic evolution of the Red Planet. The Mars Express HRSC camera gives scientists the opportunity to better understand the tectonics of Mars, including processes active in the more recent geologic history.

The colour scene was derived from the three HRSC-colour channels and the nadir channel. The 3D anaglyph image was calculated from the nadir and one stereo channel. Image resolution has been decreased for use on the internet.

Source: ESA

Explore further: NASA's MMS observatories stacked for testing

add to favorites email to friend print save as pdf

Related Stories

Where is Mars's moon Deimos?

Sep 24, 2012

(Phys.org)—Despite more than a century of observations, the orbit of the Martian moon Deimos is still not known to a high degree of accuracy, but a new study using images taken by ESA's Mars Express orbiter ...

Researchers find new form of Mars lava flow

Apr 26, 2012

High-resolution photos of lava flows on Mars reveal coiling spiral patterns that resemble snail or nautilus shells. Such patterns have been found in a few locations on Earth, but never before on Mars. The ...

Battered Tharsis Tholus volcano on Mars

Nov 09, 2011

(PhysOrg.com) -- The latest image released from Mars Express reveals a large extinct volcano that has been battered and deformed over the aeons.

Gale crater reported front-runner for MSL landing site

Jun 24, 2011

A 150-kilometer-wide hollow on Mars named Gale Crater has emerged as the front-runner for the potential landing site for the Mars Science Laboratory rover, Curiosity, which will head to Mars this fall. Nature ...

Light and dark in the Phoenix Lake

Nov 12, 2010

(PhysOrg.com) -- They say you can't judge a book by its cover but, with planets, first impressions do count. New images show where complex fault lines in Mars’ Phoenicis Lacus region have resulted in ...

Recommended for you

NASA's MMS observatories stacked for testing

25 minutes ago

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...

ISEE-3 comes to visit Earth

1 hour ago

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

Testing immune cells on the International Space Station

15 hours ago

The human body is fine-tuned to Earth's gravity. A team headed by Professor Oliver Ullrich from the University of Zurich's Institute of Anatomy is now conducting an experiment on the International Space Station ...

Easter morning delivery for space station

21 hours ago

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

NASA's space station Robonaut finally getting legs

Apr 19, 2014

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

User comments : 0

More news stories

NASA's MMS observatories stacked for testing

(Phys.org) —Engineers at NASA's Goddard Space Flight Center in Greenbelt, Md., accomplished another first. Using a large overhead crane, they mated two Magnetospheric Multiscale, or MMS, observatories – ...

ISEE-3 comes to visit Earth

(Phys.org) —It launched in 1978. It was the first satellite to study the constant flow of solar wind streaming toward Earth from a stable orbit point between our planet and the sun known as the Lagrangian ...

Easter morning delivery for space station

Space station astronauts got a special Easter treat: a cargo ship full of supplies. The shipment arrived Sunday morning via the SpaceX company's Dragon cargo capsule.

Atom probe assisted dating of oldest piece of earth

(Phys.org) —It's a scientific axiom: big claims require extra-solid evidence. So there were skeptics in 2001 when University of Wisconsin-Madison geoscience professor John Valley dated an ancient crystal ...