Polymer Nanotubes as Molecular Probes and DNA Carriers

May 01, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale structures could be used to deliver imaging and therapeutic agents to targeted cells.

Reporting its work in the journal Advanced Functional Materials, a group headed by Jyongsik Jang, Ph.D., describes the methods it used to create polymeric nanotubes with two different types of reactive molecules on their surfaces. By growing the nanotubes on a porous aluminum membrane, the researchers are able to control the overall structure of the nanotube, including the thickness of its walls and its diameter.

With the nanotubes in hand, the investigators then attached a variety of targeting, imaging and therapeutic molecules to the surface of the nanotubes. The researchers then performed detailed physical characterizations of the functionalized nanotubes.

In addition, the investigators conducted a set of imaging experiments in which they used a short stretch of DNA as a targeting molecule and a fluorescent dye as the imaging agent. The piece of DNA that the researchers chose recognizes and binds to the BRCA1 tumor suppressor gene, mutations in which increases susceptibility to developing breast cancer. When administered to breast cancer tumor cells, the targeted nanotubes were taken up by the cells and bound to the mutant gene. The nanotubes bound to the BRCA1 gene were clearly visible under a fluorescence microscope.

This work is detailed in a paper titled, “Dual-functionalized polymer nanotubes as substrates for molecular-probe and DNA-carrier applications.” An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Optically activating a cell signaling pathway using carbon nanotubes

add to favorites email to friend print save as pdf

Related Stories

Hydrocarbon photocatalysts get in shape and go for gold

Mar 10, 2015

A combination of semiconductor catalysts, optimum catalyst shape, gold-copper co-catalyst alloy nanoparticles and hydrous hydrazine reducing agent enables an increase of hydrocarbon generation from CO2 by a facto ...

Explainer: What is a superconductor?

Mar 05, 2015

Materials can be divided into two categories based on their ability to conduct electricity. Metals, such as copper and silver, allow electrons to move freely and carry with them electrical charge. Insulators, ...

Recommended for you

Designer's toolkit for dynamic DNA nanomachines

Mar 26, 2015

The latest DNA nanodevices created at the Technische Universitaet Muenchen (TUM)—including a robot with movable arms, a book that opens and closes, a switchable gear, and an actuator—may be intriguing ...

Simple method of binding pollutants in water

Mar 26, 2015

New types of membrane adsorbers remove unwanted particles from water and also, at the same time, dissolved substances such as the hormonally active bis-phenol A or toxic lead. To do this, researchers at the ...

Gold nanoparticles for targeted cancer treatment

Mar 26, 2015

The use of tiny drug-loaded nanocarriers for the safe, targeted delivery of drugs to designated parts of the body has received much press in recent years. Human trials of nanocarriers targeting pancreatic ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.