Polymer Nanotubes as Molecular Probes and DNA Carriers

May 01, 2006

By growing polymers on a porous aluminum oxide template, researchers at the Seoul National University in Korea have fabricated polymer nanotubes to which they can attach two different types of molecules. These new nanoscale structures could be used to deliver imaging and therapeutic agents to targeted cells.

Reporting its work in the journal Advanced Functional Materials, a group headed by Jyongsik Jang, Ph.D., describes the methods it used to create polymeric nanotubes with two different types of reactive molecules on their surfaces. By growing the nanotubes on a porous aluminum membrane, the researchers are able to control the overall structure of the nanotube, including the thickness of its walls and its diameter.

With the nanotubes in hand, the investigators then attached a variety of targeting, imaging and therapeutic molecules to the surface of the nanotubes. The researchers then performed detailed physical characterizations of the functionalized nanotubes.

In addition, the investigators conducted a set of imaging experiments in which they used a short stretch of DNA as a targeting molecule and a fluorescent dye as the imaging agent. The piece of DNA that the researchers chose recognizes and binds to the BRCA1 tumor suppressor gene, mutations in which increases susceptibility to developing breast cancer. When administered to breast cancer tumor cells, the targeted nanotubes were taken up by the cells and bound to the mutant gene. The nanotubes bound to the BRCA1 gene were clearly visible under a fluorescence microscope.

This work is detailed in a paper titled, “Dual-functionalized polymer nanotubes as substrates for molecular-probe and DNA-carrier applications.” An abstract of this paper is available at the journal’s website.

Source: National Cancer Institute

Explore further: Nanocontainers for nanocargo: Delivering genes and proteins for cellular imaging, genetic medicine and cancer therapy

add to favorites email to friend print save as pdf

Related Stories

Biodistribution of carbon nanotubes in the body

Jul 04, 2014

Having perfected an isotope labeling method allowing extremely sensitive detection of carbon nanotubes in living organisms1, CEA and CNRS researchers have looked at what happens to nanotubes after one year inside an animal. ...

Watching nanoscale fluids flow

Jun 27, 2014

(Phys.org) —At the nanoscale, where objects are measured in billionths of meters and events transpire in trillionths of seconds, things do not always behave as our experiences with the macro-world might ...

Recommended for you

Engineered proteins stick like glue—even in water

13 hours ago

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed new materials that ...

Smallest possible diamonds form ultra-thin nanothreads

13 hours ago

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0