New concept for bendable packaged ultra-thin chips presented

Apr 04, 2006

IMEC and its associated laboratory INTEC of the University of Ghent jointly developed a new process flow for ultra-thin chip packages resulting in bendable packaged chips of only 50µm thickness. The technology enables embedding packaged chips empowering smart, highly-integrated, flexible electronic systems for a wide variety of applications.

The process has been demonstrated with silicon chips thinned down to 20-30µm. Thanks to the very low thickness of the chip, polyimide layers and metal, a total thickness down to 50µm is achieved making the whole package bendable. The ultra-thin chip package can provide an interposer enabling testing of the chip before embedding. It offers a contact fan out with more relaxed pitches.

Thanks to its flexibility, the technology enables embedding of packaged chips in flexible boards empowering smart, highly-integrated, flexible electronic systems for a wide variety of applications such as smart textile and flexible displays. The process flow has been developed within the EU funded FP6 Integrated Project, SHIFT (Smart high-integration of flex technologies).

The base substrate is a 20µm-thick polyimide layer spin-coated on a rigid glass carrier. For the fixation and the placement of the chips on the polyimide layer a bicyclobutane of less than 5µm is used as adhesive. Bicyclobutane is resistant to the high curing temperature of the top polyimide since its solvents evaporate during a pre-curing.
By placing the chips properly, either in vacuum or with a dispensed bicyclobutane, void-free bonds can be obtained.

Current research focuses on the optimization of the chip placement on dispensed (pre-cured) bicyclobutane and on avoiding voids by controlling the dispensed quantity. In this way, no vacuum environment will be required.

After the cure of the bicyclobutane at 350°C, the chip is fixed on the polyimide layer. A covering polyimide layer is spin-coated on the fixed die with a thickness of 20µm. For contacting to the chip, contact openings to the bumps of the chips are laser drilled. By using a shaped laser beam, via diameters with a top diameter down to 20µm can be realized.

A top metal layer of 1µm TiW/Cu is sputtered and photolithographically patterned, metallizing the contacts to the chip and providing a fan out to the contacts of the chips. Finally, the whole package is released from the rigid carrier.

Source: IMEC

Explore further: Simplicity is key to co-operative robots

add to favorites email to friend print save as pdf

Related Stories

Electronics that flex and stretch like skin

Sep 18, 2012

Imec announced today that it has integrated an ultra-thin, flexible chip with bendable and stretchable interconnects into a package that adapts dynamically to curving and bending surfaces. The resulting circuitry ...

Color sensors for better vision

Oct 05, 2009

CMOS image sensors in special cameras -- as used for driver assistance systems -- mostly only provide monochrome images and have a limited sensitivity to light. Thanks to a new production process these sensors ...

Tiny refrigerator taking shape to cool future computers

Jun 19, 2008

Researchers at Purdue University are developing a miniature refrigeration system small enough to fit inside laptops and personal computers, a cooling technology that would boost performance while shrinking the size of computers.

Researchers develop better X-ray nanomirrors

Jun 10, 2008

A new way of bending X-ray beams developed by MIT researchers could lead to greatly improved space telescopes, as well as new tools for biology and for the manufacture of semiconductor chips.

Driving water droplets uphill

Apr 02, 2008

Lab-on-a-chip technology could soon simplify a host of applications, thanks to a new way to move droplets up vertical surfaces on flexible chips.

Recommended for you

Simplicity is key to co-operative robots

2 hours ago

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Freight train industry to miss safety deadline

2 hours ago

The U.S. freight railroad industry says only one-fifth of its track will be equipped with mandatory safety technology to prevent most collisions and derailments by the deadline set by Congress.

IBM posts lower 1Q earnings amid hardware slump

3 hours ago

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Microsoft CEO is driving data-culture mindset

4 hours ago

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

User comments : 0

More news stories

Simplicity is key to co-operative robots

A way of making hundreds—or even thousands—of tiny robots cluster to carry out tasks without using any memory or processing power has been developed by engineers at the University of Sheffield, UK.

Microsoft CEO is driving data-culture mindset

(Phys.org) —Microsoft's future strategy: is all about leveraging data, from different sources, coming together using one cohesive Microsoft architecture. Microsoft CEO Satya Nadella on Tuesday, both in ...

IBM posts lower 1Q earnings amid hardware slump

IBM's first-quarter earnings fell and revenue came in below Wall Street's expectations amid an ongoing decline in its hardware business, one that was exasperated by weaker demand in China and emerging markets.

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.