Major Award for Carbon Natotube Partners

Jun 10, 2005

CSIRO and the NanoTech Institute of the University of Texas at Dallas have won the 2005 Avantex Innovation Prize for their breakthrough discovery of how pure carbon nanotubes can be spun into strong, flexible, electrically conductive yarns.
Interest in the potential for carbon nanotubes to create a range of futuristic materials was sparked when details of their structure were revealed in the early 1990s.
Measuring about a millionth of a millimetre in diameter, carbon nanotube fibres are immensely strong. However, they also possess two unique characteristics - excellent electrical and heat conductivity.

Following their discovery, a vigorous international research effort began to develop carbon nanotube production techniques targeted at patentable applications that exploit their extraordinary properties.

Based on their research into published information about the fibres, a team of CSIRO Textile and Fibre Technology researchers, led by Ken Atkinson, began work in 2002 to show that carbon nanotubes could act like conventional fibres by responding to 'twist' and being capable of self-locking into a yarn.

Mr Atkinson presented the team's finding to researchers at the NanoTech Institute, in November 2003 and later demonstrated that the nanotube forests grown at UTD could be hand twisted into a short length of yarn only a fraction of the width of a human hair. Yet this yarn was capable of supporting the weight of a pen.

NanoTech Institute Director, Dr Ray Baughman, says further refinement of the spinning process could lead to the production of nanotube yarns suitable for manufacturing high-value commercial products.

“These might eventually range from artificial muscles, electronic textiles, antiballistic clothing, satellite tethers, filaments for high intensity x-ray and light sources, and yarns for energy storage and generation that are weavable into textiles,” Dr Braughman says.

The 2005 Avantex Innovation Prize ('New Materials' category) will be presented to the team today - at the AVANTEX Technical Textile Congress in Frankfurt, Germany - for their collaborative effort in: “The application of the science and technology of spinning to produce pure multi-walled carbon nanotube yarns with useful new properties”.

Explore further: Innovative strategy to facilitate organ repair

add to favorites email to friend print save as pdf

Related Stories

A beautiful, peculiar molecule

Apr 16, 2014

"Carbon is peculiar," said Nobel laureate Sir Harold Kroto. "More peculiar than you think." He was speaking to a standing-room-only audience that filled the Raytheon Amphitheater on Monday afternoon for the ...

Making the most of carbon nanotube-liquid crystal combos

Apr 02, 2014

Dispersions of carbon nanotubes with liquid crystals have attracted much interest because they pave the way for creating new materials with added functionalities. Now, a study published in European Physical Jo ...

'Nanobionics' aims to give plants super powers

Apr 02, 2014

Plants are an engineering marvel of nature. Fueled by sunlight, they recycle our carbon dioxide waste into fresh oxygen for us to breathe. Plus, they make the world prettier. But, with a little help from us humans, can they ...

Carbon nanotubes grow in combustion flames

Apr 01, 2014

Professor Stephan Irle of the Institute of Transformative Bio-Molecules (WPI-ITbM) at Nagoya University and co-workers at Kyoto University, Oak Ridge National Lab (ORNL), and Chinese research institutions ...

Recommended for you

Innovative strategy to facilitate organ repair

Apr 18, 2014

A significant breakthrough could revolutionize surgical practice and regenerative medicine. A team led by Ludwik Leibler from the Laboratoire Matière Molle et Chimie (CNRS/ESPCI Paris Tech) and Didier Letourneur ...

'Exotic' material is like a switch when super thin

Apr 18, 2014

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Thinnest feasible nano-membrane produced

Apr 17, 2014

A new nano-membrane made out of the 'super material' graphene is extremely light and breathable. Not only can this open the door to a new generation of functional waterproof clothing, but also to ultra-rapid filtration. The ...

User comments : 0

More news stories

'Exotic' material is like a switch when super thin

(Phys.org) —Ever-shrinking electronic devices could get down to atomic dimensions with the help of transition metal oxides, a class of materials that seems to have it all: superconductivity, magnetoresistance ...

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.