Major Award for Carbon Natotube Partners

Jun 10, 2005

CSIRO and the NanoTech Institute of the University of Texas at Dallas have won the 2005 Avantex Innovation Prize for their breakthrough discovery of how pure carbon nanotubes can be spun into strong, flexible, electrically conductive yarns.
Interest in the potential for carbon nanotubes to create a range of futuristic materials was sparked when details of their structure were revealed in the early 1990s.
Measuring about a millionth of a millimetre in diameter, carbon nanotube fibres are immensely strong. However, they also possess two unique characteristics - excellent electrical and heat conductivity.

Following their discovery, a vigorous international research effort began to develop carbon nanotube production techniques targeted at patentable applications that exploit their extraordinary properties.

Based on their research into published information about the fibres, a team of CSIRO Textile and Fibre Technology researchers, led by Ken Atkinson, began work in 2002 to show that carbon nanotubes could act like conventional fibres by responding to 'twist' and being capable of self-locking into a yarn.

Mr Atkinson presented the team's finding to researchers at the NanoTech Institute, in November 2003 and later demonstrated that the nanotube forests grown at UTD could be hand twisted into a short length of yarn only a fraction of the width of a human hair. Yet this yarn was capable of supporting the weight of a pen.

NanoTech Institute Director, Dr Ray Baughman, says further refinement of the spinning process could lead to the production of nanotube yarns suitable for manufacturing high-value commercial products.

“These might eventually range from artificial muscles, electronic textiles, antiballistic clothing, satellite tethers, filaments for high intensity x-ray and light sources, and yarns for energy storage and generation that are weavable into textiles,” Dr Braughman says.

The 2005 Avantex Innovation Prize ('New Materials' category) will be presented to the team today - at the AVANTEX Technical Textile Congress in Frankfurt, Germany - for their collaborative effort in: “The application of the science and technology of spinning to produce pure multi-walled carbon nanotube yarns with useful new properties”.

Explore further: Graphene imperfections key to creating hypersensitive 'electronic nose'

add to favorites email to friend print save as pdf

Related Stories

Smallest possible diamonds form ultra-thin nanothreads

Sep 21, 2014

For the first time, scientists have discovered how to produce ultra-thin "diamond nanothreads" that promise extraordinary properties, including strength and stiffness greater than that of today's strongest ...

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

'Small' transformation yields big changes

Sep 15, 2014

An interdisciplinary team of researchers led by Northeastern University has developed a novel method for controllably constructing precise inter-nanotube junctions and a variety of nanocarbon structures in ...

Chemists seek state-of-the-art lithium-sulfur batteries

Jul 01, 2014

When can we expect to drive the length of Germany in an electric car without having to top up the battery? Chemists at the NIM Cluster at LMU and at the University of Waterloo in Ontario, Canada, have now ...

Scientists develop force sensor from carbon nanotubes

Jun 30, 2014

A group of researchers from Russia, Belarus and Spain, including Moscow Institute of Physics and Technology professor Yury Lozovik, have developed a microscopic force sensor based on carbon nanotubes. The ...

Recommended for you

Engineers show light can play seesaw at the nanoscale

8 hours ago

University of Minnesota electrical engineering researchers have developed a unique nanoscale device that for the first time demonstrates mechanical transportation of light. The discovery could have major ...

Engineered proteins stick like glue—even in water

Sep 21, 2014

Shellfish such as mussels and barnacles secrete very sticky proteins that help them cling to rocks or ship hulls, even underwater. Inspired by these natural adhesives, a team of MIT engineers has designed ...

A nanosized hydrogen generator

Sep 20, 2014

(Phys.org) —Researchers at the US Department of Energy's (DOE) Argonne National Laboratory have created a small scale "hydrogen generator" that uses light and a two-dimensional graphene platform to boost ...

User comments : 0