Model unfolds proteins gently

Oct 05, 2010

Protein molecules inside cells are constantly reorganizing themselves, driven by very tiny forces exerted by all the other molecules in their crowded environment. Most experimental techniques and theoretical/computational models are necessarily built around much greater driving forces. A new theoretical model reported in the Journal of Chemical Physics investigates the unfolding of fibronectin under gentler conditions.

"Typical models study very fast processes and consume a lot of CPU time," says author Alessandro Pelizzola of the Politecnico di Torino in Italy. "The strengths of our model are simplicity and the ability to model the slow, low-force processes that actually occur inside the cell."

Under the smaller forces, the researchers discovered a previously uncharacterized sequential loss of structure involving a fluctuation between two intermediates of similar complexity. The unfolding was demonstrated to involve many more steps than previously shown in experiments and more complex models. Because the model probes forces that are an order of magnitude smaller than those currently available to experimentalists, it can lead to a better understanding of biomolecular transitions within the cell.

"These small forces are beyond the current experimental techniques" says Pelizzola, "but I would expect the experiments to be possible in a few years." The model has been applied to other biomolecular processes with similarly detailed results.

Explore further: Essential oils may provide good source of food preservation

More information: The article, "Pathways of mechanical unfolding of FnIII10: low force intermediates" by M. Caraglio, A. Imparato, A. Pelizzola appears in The Journal of Chemical Physics. link.aip.org/link/jcpsa6/v133/i6/p065101/s1

Provided by American Institute of Physics

not rated yet
add to favorites email to friend print save as pdf

Related Stories

Moving polymers through pores

Jul 14, 2010

The movement of long chain polymers through nanopores is a key part of many biological processes, including the transport of RNA, DNA, and proteins. New research reported in The Journal of Chemical Physics, which ...

Cellular Workouts Strengthen Endothelial Cells' Grasp

May 13, 2010

(PhysOrg.com) -- University of Pennsylvania bioengineers have demonstrated that the cells that line blood vessels respond to mechanical forces -- the microscopic tugging and pulling on cellular structures ...

Unraveling the physics of DNA's double helix

Jul 12, 2007

Researchers at Duke University's Pratt School of Engineering have uncovered a missing link in scientists' understanding of the physical forces that give DNA its famous double helix shape.

Unravelling the 'inconvenient truth' of glacier movement

Jun 27, 2008

Predicting climate change depends on many factors not properly included in current forecasting models, such as how the major polar ice caps will move in the event of melting around their edges. This in turn requires greater ...

Recommended for you

A new approach to creating organic zeolites

Jul 24, 2014

Yushan Yan, Distinguished Professor of Engineering at the University of Delaware, is known worldwide for using nanomaterials to solve problems in energy engineering, environmental sustainability and electronics.

A tree may have the answers to renewable energy

Jul 23, 2014

Through an energy conversion process that mimics that of a tree, a University of Wisconsin-Madison materials scientist is making strides in renewable energy technologies for producing hydrogen.

User comments : 0