Highlight: Biochemists discover that enzyme converts CO to propane

Aug 06, 2010

(PhysOrg.com) -- UC Irvine researchers were exploring vanadium nitrogenase's ability to form ammonia when they stumbled onto its other ability, which could be exploited for the cost-efficient production of fuels.

UC Irvine researchers have discovered that a can convert harmful into propane, which is used as a fuel for engines, barbecues and residential heating.

Department of Molecular Biology & Biochemistry scientists were exploring vanadium nitrogenase's ability to form when they stumbled onto its other ability.

Associate Professor Markus Ribbe said the enzyme is found in bacteria in soil and plant roots, as well as industrial emissions, and could possibly be exploited for the cost-efficient production of fuels.

"The idea is that we could use this enzyme to generate energy sources like propane," he said. "There's a long way to go, but it's quite exciting."

The finding is reported in the Aug. 6 issue of Science.

Explore further: Chemical biologists find new halogenation enzyme

Related Stories

Printable biofuel cell developed in Finland

Nov 08, 2006

An enzyme-based power source is a viable source of electricity for the rapidly proliferating RFID tags used in the medical sector and logistics. Applications include plasters containing a memory circuit and ...

Recommended for you

Chemical biologists find new halogenation enzyme

8 hours ago

Molecules containing carbon-halogen bonds are produced naturally across all kingdoms of life and constitute a large family of natural products with a broad range of biological activities. The presence of halogen substituents ...

Protein secrets of Ebola virus

14 hours ago

The current Ebola virus outbreak in West Africa, which has claimed more than 2000 lives, has highlighted the need for a deeper understanding of the molecular biology of the virus that could be critical in ...

Protein courtship revealed through chemist's lens

14 hours ago

Staying clear of diseases requires that the proteins in our cells cooperate with one another. But, it has been a well-guarded secret how tens of thousands of different proteins find the correct dancing partners ...

Decoding 'sweet codes' that determine protein fates

16 hours ago

We often experience difficulties in identifying the accurate shape of dynamic and fluctuating objects. This is especially the case in the nanoscale world of biomolecules. The research group lead by Professor Koichi Kato of ...

Conjecture on the lateral growth of Type I collagen fibrils

Sep 12, 2014

Whatever the origin and condition of extraction of type I collagen fibrils, in vitro as well as in vivo, the radii of their circular circular cross sections stay distributed in a range going from 50 to 100 nm for the most ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Caliban
1 / 5 (1) Aug 06, 2010
If this can be coupled with PETE/STEP processes through CO2 extraction and splitting, it could be another big step in the right direction. Good work.
htomfields
5 / 5 (1) Aug 31, 2010
On a similar note--Xtreme Xylanase. The metabolic versatility of this enzyme will enable economic enzyme production, biomass pretreatment process versatility, and significant equipment and operational cost savings that could make affordable cellulosic ethanol a reality.

http://www.inl.go...xlanase/