Cells use water in nano-rotors to power energy conversion

Aug 03, 2010

Researchers from the Max Planck Institute of Biophysics in Frankfurt, and Mount Sinai School of Medicine in New York have provided the first atomic-level glimpse of the proton-driven motor from a major group of ATP synthases, enzymes that are central to cellular energy conversion.

The study, by Dr. Thomas Meier, his PhD student Laura Preiss and Dr. Ozkan Yildiz of the Max-Planck Institute, and Drs. Terry Krulwich and David Hicks of Mount Sinai, revealed a water molecule in the critical rotor element of a bacterial nano-motor that shares common features with the rotors of ATP synthases from human mitochondria and from diverse bacteria, including pathogens such as Mycobacterium tuberculosis, in which the ATP synthase is a . The paper publishes next week in the online, open access journal .

ATP synthases are among the most abundant and important proteins in living cells. These rotating nano-machines produce the central chemical form of cellular energy currency, ATP (adenosine triphosphate), which is used to meet the energy needs of cells. For example, human adults synthesize up to 75 kg of ATP each day under resting conditions and need a lot more to keep pace with energy needs during strenuous exercise or work. The turbine of the ATP synthase is the rotor element, called the c-ring. This ring is 63 A in diameter (6.3 nm, or 6.3 millionths of a millimeter) and completes over 500 rotations per second during ATP production.

The researchers from Frankfurt and New York were able to grow three-dimensional of the unusually stable rotor ring from a Bacillus that can grow under extremely low-proton (alkaline) conditions. The of this turbine was determined using X-ray crystallography.

The researchers were surprised by the results and excited by the promise they hold for future mechanistic insights into the structure and function of ATP synthases. Dr. Meier states: "We did not expect a water molecule to be a key player in this group of rotors. This atomic structure gives us a new and much better framework for understanding how these proton-driven nano-machines work, how they capture the protons that fuel rotation and how they hold on to them through rotation.

The results join other recent examples of the usefulness of unusual organisms, such as this 'extremophilic' bacillus, in providing insights into fundamental life processes and we look forward to further collaborative work on different forms of this rotor. Further basic research into the structural and mechanistic details of ATP synthase nano-machines will impact both nanotechnology and medicine and, perhaps, areas in which nanotechnology converges with medicine."

Explore further: Structure of sodium channels different than previously believed

More information: Preiss L, Yildiz O, Hicks DB, Krulwich TA, Meier T (2010) A New Type of Proton Coordination in an F1Fo-ATP Synthase Rotor Ring. PLoS Biol 8(8): e1000443. doi:10.1371/journal.pbio.1000443

Related Stories

Tuberculosis drug shows promise against latent bacteria

Sep 12, 2008

A new study has shown that an investigational drug (R207910, currently in clinical trials against multi-drug resistant tuberculosis strains) is quite effective at killing latent bacteria. This revelation suggests that R207910 ...

Recommended for you

Breakthrough points to new drugs from nature

Apr 16, 2014

Researchers at Griffith University's Eskitis Institute have developed a new technique for discovering natural compounds which could form the basis of novel therapeutic drugs.

World's first successful visualisation of key coenzyme

Apr 16, 2014

Japanese researchers have successfully developed the world's first imaging method for visualising the behaviour of nicotine-adenine dinucleotide derivative (NAD(P)H), a key coenzyme, inside cells. This feat ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Rohitasch
not rated yet Aug 03, 2010
75 kg ATP/day? Errr..,Someone missed a decimal point, right?
GPG
5 / 5 (1) Aug 03, 2010

More news stories

Scientists tether lionfish to Cayman reefs

Research done by U.S. scientists in the Cayman Islands suggests that native predators can be trained to gobble up invasive lionfish that colonize regional reefs and voraciously prey on juvenile marine creatures.

Leeches help save woman's ear after pit bull mauling

(HealthDay)—A pit bull attack in July 2013 left a 19-year-old woman with her left ear ripped from her head, leaving an open wound. After preserving the ear, the surgical team started with a reconnection ...

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...