Bacterial communication encourages chronic, resistant ear infections

Jul 06, 2010

Ear infections caused by more than one species of bacteria could be more persistent and antibiotic-resistant because one pathogen may be communicating with the other, encouraging it to bolster its defenses. Interrupting or removing that communication could be key to curing these infections. Researchers from Wake Forest University Baptist Medical Center publish their findings today in mBio, the online open-access journal of the American Society for Microbiology.

"In this study we show that communication between promotes bacterial persistence and resistance to antibiotics, which are important considerations in the diagnosis, preventions and treatment of otitis media (OM)," says W. Edward Swords, an associate professor of microbiology and immunology and senior author of the study. Chelsie Armbruster, a Ph.D. student working in Swords' lab, co-authored the study.

OM is one of the most common childhood infections and is the leading reason for pediatric office visits and new to children. OM infections often persist for long periods of time and are often resistant to antibiotics. These chronic and recurrent cases of OM involve the persistence of the bacteria within a biofilm community, a state in which they are highly resistant to both natural clearance by the immune system and antibiotic treatment.

Epidemiological data indicate that the majority of chronic OM infections are polymicrobial in nature, meaning they are caused by more than one species of bacteria. Haemophilus influenzae and Moraxella catarrhalis are frequently found together in samples obtained from patients with chronic and recurrent OM.

"Interestingly, a recent study found M. catarrhalis to be more frequently associated with polymicrobial OM infections than from single-species OM infections. This suggests that the presence of other bacterial pathogens may impact the persistence of M. catarrhalis or the severity of disease caused by this species," says Swords.

In examining the dynamics between these two bacteria in culture and animal models, Swords and his colleagues discovered the H. influenzae secreted autoinducer-2 (AI-2), a chemical involved in an interbacterial method of communication known as quorum sensing, that promoted increased biofilm formation and antibiotic resistance in M. catarrhalis.

"We conclude that H. influenzae promotes M. catarrhalis persistence within polymicrobial infection biofilms via inter-species quorum signaling. AI-2 may therefore represent an ideal target for disruption of chronic polymicrobial infections," says Swords. "Moreover, these results strongly imply that successful vaccination against the unencapsulated H. influenzae strains that cause airway infections may also significantly impact chronic M. catarrhalis disease by removing a reservoir for the AI-2 signal that promotes M. catarrhalis persistence within biofilms."

Explore further: Bulletproof nuclei? Stem cells exhibit unusual absorption property

More information: mbio.asm.org

Provided by American Society for Microbiology

5 /5 (1 vote)
add to favorites email to friend print save as pdf

Related Stories

Bacteria 'launch a shield' to resist attack

Nov 02, 2009

Bacteria that cause chronic lung infections can communicate with each other to form a deadly shield against the body's natural defenses. Studying these interactions could lead to new ways of treating bacteria that are resistant ...

Gallium: A new antibacterial agent?

Mar 16, 2007

New antibacterial strategies are needed because more and more bacteria are antibiotic resistant and because antibiotics are not effective at eradicating chronic bacterial infections. One approach to developing new antibacterial ...

Recommended for you

Researchers successfully clone adult human stem cells

Apr 18, 2014

(Phys.org) —An international team of researchers, led by Robert Lanza, of Advanced Cell Technology, has announced that they have performed the first successful cloning of adult human skin cells into stem ...

Researchers develop new model of cellular movement

Apr 18, 2014

(Phys.org) —Cell movement plays an important role in a host of biological functions from embryonic development to repairing wounded tissue. It also enables cancer cells to break free from their sites of ...

User comments : 0

More news stories

Making graphene in your kitchen

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

Low tolerance for pain? The reason may be in your genes

Researchers may have identified key genes linked to why some people have a higher tolerance for pain than others, according to a study released today that will be presented at the American Academy of Neurology's 66th Annual ...

How to keep your fitness goals on track

(HealthDay)—The New Year's resolutions many made to get fit have stalled by now. And one expert thinks that's because many people set their goals too high.