Very Large Telescope detects first superstorm on exoplanet (w/ Video)

Jun 23, 2010
Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. This artist’s impression shows the Jupiter-like transiting planet around its solar-like host star. Credit: ESO/L. Calcada

Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied "hot Jupiter" HD209458b. The very high-precision observations of carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. The observations also allow another exciting "first" -- measuring the orbital speed of the exoplanet itself, providing a direct determination of its mass.

The results appear this week in the journal Nature.

"HD209458b is definitely not a place for the faint-hearted. By studying the poisonous carbon monoxide gas with great accuracy we found evidence for a super wind, blowing at a speed of 5000 to 10 000 km per hour," says Ignas Snellen, who led the team of astronomers.

HD209458b is an of about 60% the mass of Jupiter orbiting a solar-like star located 150 light-years from Earth towards the constellation of Pegasus (the Winged Horse). Circling at a distance of only one twentieth the Sun-Earth distance, the planet is heated intensely by its , and has a surface temperature of about 1000 degrees Celsius on the hot side. But as the planet always has the same side to its star, one side is very hot, while the other is much cooler. "On Earth, big temperature differences inevitably lead to fierce winds, and as our new measurements reveal, the situation is no different on HD209458b," says team member Simon Albrecht.

HD209458b was the first exoplanet to be found transiting: every 3.5 days the planet moves in front of its host star, blocking a small portion of the starlight during a three-hour period. During such an event a tiny fraction of the starlight filters through the planet's atmosphere, leaving an imprint. A team of astronomers from the Leiden University, the Netherlands Institute for Space Research (SRON), and MIT in the United States, have used ESO's Very Large Telescope and its powerful CRIRES spectrograph to detect and analyse these faint fingerprints, observing the planet for about five hours, as it passed in front of its star. "CRIRES is the only instrument in the world that can deliver spectra that are sharp enough to determine the position of the carbon monoxide lines at a precision of 1 part in 100 000," says another team member Remco de Kok. "This high precision allows us to measure the velocity of the gas for the first time using the Doppler effect."

This video is not supported by your browser at this time.
Astronomers have measured a superstorm for the first time in the atmosphere of an exoplanet, the well-studied “hot Jupiter” HD209458b. The very high-precision observations of the carbon monoxide gas show that it is streaming at enormous speed from the extremely hot day side to the cooler night side of the planet. This video shows an artist’s impression of the Jupiter-like transiting planet around its solar-like host star.

The astronomers achieved several other firsts. They directly measured the velocity of the exoplanet as it orbits its home star. "In general, the mass of an exoplanet is determined by measuring the wobble of the star and assuming a mass for the star, according to theory. Here, we have been able to measure the motion of the planet as well, and thus determine both the mass of the star and of the planet," says co-author Ernst de Mooij.

Also for the first time, the astronomers measured how much carbon is present in the atmosphere of this planet. "It seems that H209458b is actually as carbon-rich as Jupiter and Saturn. This could indicate that it was formed in the same way," says Snellen. "In the future, astronomers may be able to use this type of observation to study the atmospheres of Earth-like , to determine whether life also exists elsewhere in the Universe."

Explore further: The Great Debate over whether the universe is small or large

More information: This research was presented in a paper that appears this week in the journal Nature: "The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b", by I. Snellen et al. www.nature.com/nature/journal/… ull/nature09111.html

Related Stories

First temperate exoplanet sized up (w/ Video)

Mar 17, 2010

(PhysOrg.com) -- Combining observations from the CoRoT satellite and the ESO HARPS instrument, astronomers have discovered the first “normal” exoplanet that can be studied in great detail. Designated Corot-9b, ...

Hazy red sunset on extrasolar planet

Dec 11, 2007

A team of astronomers have used the NASA/ESA Hubble Space Telescope to detect, for the first time, strong evidence of hazes in the atmosphere of a planet orbiting a distant star. The discovery comes after ...

Scientists discover a nearly Earth-sized planet (Update)

Apr 21, 2009

(PhysOrg.com) -- Exoplanet researcher Michel Mayor announces the discovery of the lightest exoplanet found so far. The planet, "e," in the system Gliese 581, is only about twice the mass of our Earth. The ...

First Solid Evidence for a Rocky Exoplanet (w/ Video)

Sep 16, 2009

(PhysOrg.com) -- The longest set of HARPS measurements ever made has firmly established the nature of the smallest and fastest-orbiting exoplanet known, CoRoT-7b, revealing its mass as five times that of Earth's. ...

Recommended for you

The Great Cold Spot in the cosmic microwave background

3 hours ago

The cosmic microwave background (CMB) is the thermal afterglow of the primordial fireball we call the big bang. One of the striking features of the CMB is how remarkably uniform it is. Still, there are some ...

Mystery of rare five-hour space explosion explained

Sep 17, 2014

Next week in St. Petersburg, Russia, scientists on an international team that includes Penn State University astronomers will present a paper that provides a simple explanation for mysterious ultra-long gamma-ray ...

User comments : 0