Single-particle resonances in a deformed relativistic potential

Jun 03, 2010

A variety of structural phenomena in exotic short-lived nuclei far from stability, especially in systems close to the particle drip lines, challenge model descriptions based on the self-consistent mean-field approximation. Because the Fermi level in a drip-line nucleus is very close to the continuum, both weakly-bound states and low-lying positive energy single-particle resonant states are essential to determine the ground state properties of such systems.

The research team at Peking University, which has been dedicated to the study of nuclear structure and for the last few decades, has examined the evolution of levels close to the continuum threshold and, in particular, the occurrence of single-neutron resonant states as functions of the axial deformation parameter 0 ≤ β ≤ 0.5. The study is reported in Issue 53, Volume 4 (April, 2010) of Science China Physics, Mechanics & Astronomy.

For an open-shell close to the drip-line, interesting effects result from the interplay between deformation and low-lying resonances, and therefore the theoretical investigation of single-particle resonant states in deformed potentials is particularly interesting. In the paper by Li et al., the single-neutron states with positive parity have been obtained as solutions of the corresponding single-particle Dirac equation, using the coupled-channels method in coordinate space.

The main conclusion reported by the investigators is that the admixture of s1/2 component determines the occurrence of single-neutron resonant states as functions of the axial deformation parameter.

"In our current work, the main focus is on single-particle resonances in a deformed system, especially those with mπ=1/2+. This is also the foundation for the understanding of a deformed exotic nucleus in Relativistic Mean-Field (RMF) theory and a natural extension of our previous work on spherical cases" noted principal investigator MENG Jie, Professor at Peking University.

Funding from the Major State Basic Research Developing Program, the National Natural Science Foundation in China, and Inter-governmental S&T Cooperation Project between China and Croatia supported this research.

It is considered that this research deserves publication because the approach is state-of-art, the work is innovative, the results are of interest, and the paper is well written.

Explore further: What is Nothing?

More information: Li Z P, Zhang Y, Vretenar D, Meng J. Single-particle resonances in a deformed relativistic potential. Science China Physics, Mechanics & Astronomy, 2010, 53(4): 773-778 scichina.com:8083/sciGe/EN/abs… bstract417025.shtml#

Provided by Science in China Press

2.3 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Quantum simulation of a relativistic particle

Jan 06, 2010

(PhysOrg.com) -- Researchers of the Institute for Quantum Optics and Quantum Information (IQOQI) in Innsbruck, Austria used a calcium ion to simulate a relativistic quantum particle, demonstrating a phenomenon ...

Exotic symmetry seen in ultracold electrons

Jan 18, 2010

(PhysOrg.com) -- An exotic type of symmetry - suggested by string theory and theories of high-energy particle physics, and also conjectured for electrons in solids under certain conditions - has been observed ...

Physicists pin down the proton-halo state in Flourine-17

May 26, 2010

A halo nucleus has one or more nucleons that are only weakly bound to the nuclear core. Consequently, they drift far away from it, forming, in effect, a halo. These nuclei are difficult to study because their lives are both ...

Neutron physics instrument may unlock mysteries of universe

Sep 16, 2004

Fundamental questions that particle physicists have pondered for decades might be answered when a $9.2 million neutron physics beam line is built at the Department of Energy's Spallation Neutron Source on Chestnut Ridge. ...

Recommended for you

What is Nothing?

22 hours ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

Aug 22, 2014

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

Aug 21, 2014

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 0