Gates open on understanding potassium channel controls

Jun 03, 2010
Dr. Jacqui Gulbis and Mr. Oliver Clarke from the Walter and Eliza Hall Institute in Melbourne, Australia, have made a significant advance in understanding how potassium channels, which permit the flow of electric currents central to many of the body's biological processes, control the flow of these currents. Credit: Czesia Markiewicz, Walter and Eliza Hall Institute

Walter and Eliza Hall Institute scientists have made a significant advance in understanding how potassium channels, which permit the flow of electric currents central to many of the body's biological processes, control the flow of these currents.

Dr Jacqui Gulbis from the institute's Structural Biology division, who led the research, said previous studies that had identified what potassium channels look like had provided valuable insights into how they work. However, the way the channels open and close in response to regulatory signals has not been well understood.

"Potassium currents are central to many cellular processes, and particularly communication between cells," Dr Gulbis said.

"In the central nervous system, for example, electrical signaling underlies perception and movement; whilst in the heart, cardiac contraction relies upon the rhythmic ebb-and-flow of potassium. The electricity comes from the tiny charge associated with each .

"Just as one would use a light switch to turn electrical current on and off, potassium channels use molecular gates to switch conduction on and off in response to physiological signals," Dr Gulbis said. "However, the nature of the gates and the gating process has remained unclear."

This video is not supported by your browser at this time.
Dr. Jacqui Gulbis and Mr. Oliver Clarke from the Walter and Eliza Hall Institute in Melbourne, Australia, explain how potassium channels, which permit the flow of electric currents central to many of the body’s biological processes, control the flow of these currents. Their findings are published online this week in Cell. Credit: Cameron Wells, Walter and Eliza Hall Institute

are specialised pores in cell membranes. They have a signature region termed the ion selectivity filter, which is responsible for ensuring that only potassium, and not sodium, permeates the membrane.

Dr Gulbis, with Mr Oliver Clarke, Dr Brian Smith and Mr Alex Caputo from the institute's Structural Biology division, in collaboration with Dr Jamie Vandenberg and Dr Adam Hill from the Victor Chang Cardiac Research Institute, has illuminated key aspects of the gating process.

Although previous studies have implicated a constriction in the ion conduction pathway in gating, this study describes a gate that is located in the ion selectivity filter.

Using the Australian Synchrotron, Dr Gulbis's team determined that once the conformation of a regulatory domain - which is the part of the channel that sits inside the cell - changes, it allows the selectivity filter to act as an on/off switch.

The findings have been published today in the journal Cell.

Explore further: Democratizing synthetic biology: New method makes research cheaper, faster, and more accessible

Provided by Walter and Eliza Hall Institute

5 /5 (2 votes)
add to favorites email to friend print save as pdf

Related Stories

Unraveling the mysteries of poison

Apr 13, 2006

Researchers from the Max Planck Institite for Biophysical Chemistry and other German and French colleagues have combined magnetic resonance spectroscopy (solid-state NMR) with special protein synthesis procedures to uncover ...

Recommended for you

Sall4 is required for DNA repair in stem cells

4 hours ago

A protein that helps embryonic stem cells (ESCs) retain their identity also promotes DNA repair, according to a study in The Journal of Cell Biology. The findings raise the possibility that the protein, Sall4, ...

Desmoplakin's tail gets the message

4 hours ago

Cells control the adhesion protein desmoplakin by modifying the tail end of the protein, and this process goes awry in some patients with arrhythmogenic cardiomyopathy, according to a study in The Journal of ...

Looking for alternatives to antibiotics

5 hours ago

Bacteria that talk to one another and organize themselves into biofilms are more resistant to antibiotics. Researchers are now working to develop drugs that prevent bacteria from communicating.

How is the membrane protein folded?

5 hours ago

A key factor in the biosynthesis and stable expression of multi-pass transmembrane proteins was discovered, and its loss is thought to cause retinal degeneration. The factor works especially for multi-pass ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.