Scientists create artificial mini 'black hole'

Jun 03, 2010 by Lisa Zyga report
(Left) A model of the electromagnetic omnidirectional absorber, in which electromagnetic waves hitting the cylinder bend spirally in the shell region, and become trapped and absorbed by the lossy core. (Right) A photograph of the device, which is composed of 60 concentric layers of copper-coated metamaterials. Image credit: Institute of Physics.

( -- Scientists from China have built a device that can trap and absorb microwaves coming from all directions with a 99% absorption rate - a property that makes the device simulate, to some extent, an astrophysical black hole.

The scientists, who are from Southeast University in Nanjing, China, explain in their study published in the that this is the first experimental demonstration of an omnidirectional electromagnetic absorber in the microwave frequency region. To build the absorber, the researchers used the unique properties of to manipulate light waves and achieve the wave trapping and absorbing properties.

The device itself is composed of a thin cylinder containing 60 concentric rings of copper-coated metamaterials arranged in layers. Each layer is imprinted with alternating patterns of resonant and non-resonant metamaterial structures. The design traps and absorbs coming from all directions by spiraling the radiation inward and converting its energy into heat. As with a black hole, cannot escape from the device.

Although the electromagnetic absorber currently works only with microwaves, the researchers plan to develop a device that works with visible light. The device demonstrated here could have applications such as collecting microwaves and energies in free space, or as a source of thermal emission, since the device transfers electromagnetic energy into heat energy.

You can now listen to all podcasts at

Explore further: Researchers find first direct evidence of 'spin symmetry' in atoms

More information: Qiang Cheng, et al. “An omnidirectional electromagnetic absorber made of metamaterials” 2010 New Journal of Physics 12 063006. DOI:10.1088/1367-2630/12/6/063006.

Related Stories

Chinese scientists create metamaterial black hole

Oct 16, 2009

( -- Two physicists in China have used metamaterials to create the first artificial electromagnetic black hole. The scientists, Qiang Cheng and Tie Jun Cui from the Southeast University in Nanjing, ...

Team develops new metamaterial device

Feb 24, 2009

An engineered metamaterial proved it can function as a state-of-the-art device in the complex terahertz range of the electromagnetic spectrum, setting a standard of performance for modulating tiny waves of radiation, according ...

Terahertz-controlling device is built

Dec 04, 2006

U.S. government scientists say they've built a device that can manipulate terahertz radiation, perhaps leading to new imaging and communications devices.

Next generation cloaking device demonstrated

Jan 15, 2009

A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype ...

Recommended for you

What is Nothing?

1 hour ago

Is there any place in the Universe where there's truly nothing? Consider the gaps between stars and galaxies? Or the gaps between atoms? What are the properties of nothing?

On the hunt for dark matter

4 hours ago

New University of Adelaide Future Fellow Dr Martin White is starting a research project that has the potential to redirect the experiments of thousands of physicists around the world who are trying to identify the nature ...

Water window imaging opportunity

22 hours ago

Ever heard of the water window? It consists of radiations in the 3.3 to 4.4 nanometre range, which are not absorbed by the water in biological tissues. New theoretical findings show that it is possible to ...

User comments : 13

Adjust slider to filter visible comments by rank

Display comments: newest first

1.3 / 5 (4) Jun 03, 2010
This has good potential as said in the article, but is it actually possible to create a "real" black-hole which could start sucking matter?
not rated yet Jun 03, 2010

"... a property that makes the device simulate, to some extent, an astrophysical black hole." The author of the article is just comparing it to a real black hole behavior.

"As with a black hole, electromagnetic radiation cannot escape from the device.". The words "black hole" are very catchy.
3 / 5 (4) Jun 03, 2010
I have a mini flashlight!
5 / 5 (3) Jun 03, 2010
This is a repeat from over a year ago.
3.6 / 5 (16) Jun 03, 2010
Although the electromagnetic absorber currently works only with microwaves, the researchers plan to develop a device that works with visible light.
So basicaly, what they are planing is, to re-invent black paint? o_O

Not saying it's bad.. Development of metamaterial based high-absorbtion black pigment could be quite usefull in many areas :)
not rated yet Jun 04, 2010
Considering a disk is utilized, what would be effects of utilizing cylindrical hyperparaboloid? Hyperparaboloid base unit = saddle surface.light may essentially vanish as it transits around the corner at the 180 degree coordinate
From the circular side one would observe the Yin/Yang geometry. From the rectangular side one would observe a waveform geometry, double helix, if wall of cylinder were transparent.
not rated yet Jun 05, 2010
Who are you kidding. This was reported months ago here! Does anyone know what the term "Fact-checking" means"
1 / 5 (2) Jun 06, 2010
Fact checking? We don' need no stinkin' fact checking!

It's someone's not so subtle way of urging/convincing of the Chinese drive to weaponize anything they can steal.
5 / 5 (1) Jun 06, 2010
It's someone's not so subtle way of urging/convincing of the Chinese drive to weaponize anything they can steal.
No, if that was the case it would be a Chinese State Secret, and as such we wouldn't be seeing it.

The Chinese aren't really up on that "Kill the US and Dominate the World with Maoism" philosophy. They don't want to be stuck with an archaeic infrastructure and are attempting to gain more power on the world stage in order to get a piece of the technological action rather than being everyone's manufacturing bitch like India.
5 / 5 (1) Jun 06, 2010
Shame on you physorg editors. Why did you even use the black hole analogy? Black holes are perfect black-bodies, and the idea is to create a near perfect black body. Using the term black hole brings up loads of misconceptions in the general public.


It is actually much better than black paint, as black paint doesn't absorb all that much of the visible spectrum.
3 / 5 (2) Jun 07, 2010
..why did you even use the black hole analogy?..
Because the metamaterial foam is really an analogy of quantum foam, forming the vacuum and light of certain frequency is spreading through it like light wave in vacuum. With compare to metamaterials, vacuum foam is a little bit "clever" - it works for wide range of wavelength, but the general principle remains.
3 / 5 (2) Jun 07, 2010
Actually, we can met with black hole analogy even in common life during observation of rainbows in heavy rain. The dense droplets are similar to foam, because they contain surfaces with both positive, both negative surfaces. Between primary and secondary rainbow we can see the dispersionless Alexander's dark band, which roughly correspond to vacuum foam, through light is spreading without dispersion.


This model renders physical surface of material objects as a massive case of light dispersion. It can explain symmetry breaking inside of our Universe from Kramers–Kronig relations.
3 / 5 (2) Jun 07, 2010
This asymmetry can be understood easily, if we realize, every object with positive rest mass (like we are) can observe / interact / collide only with objects with positive rest mass too, i.e. with particles with positive surface curvature, too. The places with negative surface curvature will be perceived like bubbles of hollow space, instead.

t means, even if we can consider vacuum as a quite symmetric quantum foam with both positive both negative curvatures, due the positive curvature of ours the positive curvature of fluctuations inside of vacuum will be still preferred.

The Kramers-Kroning equations are making this asymmetry more explicit, because they're describing the dependence of metamaterial foam refraction index and absorbance to wavelength of light. The requirement for minimal absorbance and refraction index of foam leads to asymmetric point, denoted by circle on the graph linked bellow, where both function, both its derivation remains minimal.