New laser technology brings perfect focus to medical advances

May 14, 2010
Optimization procedure applied on the crest logo of the University of St Andrews. a. Simulation of the resulting field distribution in an “optimal” system with no aberrations. b. The experimental reality obtained in our uncorrected system. c. Enhanced results after applying our correction method.

(PhysOrg.com) -- Researchers at the University of St Andrews' School of Physics and Astronomy have developed a new laser imaging technique that overcomes visual distortions and promises advances in deep tissue imaging and even nanosurgery.

Since the advent of the laser, the last 50 years have seen amazing advances in our use and understanding of . However, light scatters quickly when passing through a turbulent object or medium - rendering any imaging or light focusing difficult. A good example is peering through mist or a typical bathroom window, which randomly scatters the incident light making it difficult to see what is on the other side.

Now Researchers at the School of Physics and Astronomy have developed a novel method to shape or “sculpt” the wavefront of light so that it reforms itself after passing through a turbulent medium.

Writing in the journal , Tomas Cizmar, Michael Mazilu and Kishan Dholakia describe how they can place a fluorescent or strongly scattering object within a turbulent media and then employ a signal from this to provide aberration correction for the object that they wish to see. The correction to the is introduced to the system via a liquid crystal micro-display display unit similar to those found in data projectors. Perfect focusing is an extremely important attribute in modern biophotonics systems and the researchers demonstrated the power of their technique in the case of optical trapping in a complicated scattering environment.

Tomas Cizmar said, “Such methods are opening up a new window in bio-photonics sciences. These techniques are extremely powerful as they eliminate the obstructing barrier of biological samples given by their random structure, responsible for light scattering and wavefront degradation.”

Co-author Michael Mazilu said, “The propagation of light still holds many surprises and new challenges in fundamental optics - who could ever have thought we could “see” through such aberrations?”

Kishan Dholakia said, “This opens up exciting new applications: one can imagine one day using optical trapping to make measurements within blood vessels. In the shorter term we should be able to apply the same physics for probing inside artificial crystals, deep tissue imaging and even nanosurgery for cells embedded well within tissue. The possibilities are immense.”

The researchers are now advancing their technique with the Schools of Biology and Medicine for interdisciplinary applications.

Explore further: Researchers seek broadband/multiband electromagnetic absorbers based on plasmonic and metamaterial structures

Provided by University of St Andrews

4.3 /5 (8 votes)

Related Stories

Shedding new light on cancer

Jan 22, 2010

(PhysOrg.com) -- Researchers at the University of St Andrews have developed a powerful technique that could allow earlier cancer detection.

'Seeing' through paint

Mar 18, 2010

(PhysOrg.com) -- When light passes through materials that we consider opaque, such as paint, biological tissue, fabric and paper, it is scattered in such a complex way that an image does not come through. ...

Micromirrors Correct Optical Errors

Jul 31, 2004

Before undergoing laser eye surgery, patients are given a glimpse of their future vision through an array of movable miniature mirrors. The technique originated in astronomy, where secondary mirrors in terres ...

Recommended for you

Study finds physical link to strange electronic behavior

5 hours ago

Scientists have new clues this week about one of the baffling electronic properties of the iron-based high-temperature superconductor barium iron nickel arsenide. A Rice University-led team of U.S., German ...

Refocusing research into high-temperature superconductors

18 hours ago

Below a specific transition temperature superconductors transmit electrical current nearly loss-free. For the best of the so-called high-temperature superconductors, this temperature lies around -180 °C – a temperature ...

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

Bob_B
not rated yet May 14, 2010
Could this map the neural network in a brain?
PinkElephant
not rated yet May 14, 2010
A good example is peering through mist or a typical bathroom window...This opens up exciting new applications...
Peeping Toms everywhere, rejoice!

(Sorry, I just couldn't resist...)