How shape-memory materials remember

Apr 26, 2010

X-ray studies and fundamental calculations are helping physicists gain molecular level insight into the workings of some magnetic shape-memory materials, which change shape under the influence magnetic fields.

Shape-memory materials could potentially serve as light weight, compact alternatives to conventional motors and actuators. But developing practical devices will require creating materials that exhibit much larger changes in shape than most of the known shape-memory materials.

A paper appearing in the April 25 issue of reports on the efforts of a team of Japanese physicists who probed the changes in a magnetic shape-memory material at the molecular scale. The work is highlighted with a Viewpoint article by Antoni Planes (Universitat de Barcelona) in the April 25 edition of APS Physics.

The new research focused on a shape-memory alloy made up of nickel, manganese and tin. In its ideal form, the alloy is a crystal with each element occupying specific crystal locations relative to one another. In some versions, however, excess manganese atoms replace some of the tin atoms. Although the compositional change is slight, it can have significant effects on the alloy's behavior. X-ray allowed the researchers to observe the microscopic characteristics of the alloy to see precisely how the excess manganese atoms affect the alloy's behavior.

By studying the way that composition affects a shape-memory material, and comparing measurements to , it will be possible to understand what makes the materials work, and allow physicists to develop new and improved varieties shape-changing metals.

Explore further: Unexpected new mechanism reveals how molecules become trapped in ice

More information: Role of Electronic Structure in the Martensitic Phase Transition of Ni2Mn1+xSn1-x Studied by Hard-X-Ray Photoelectron Spectroscopy and Ab Initio Calculation, M. Ye, A. Kimura, Y. Miura, M. Shirai, Y. T. Cui, K. Shimada, H. Namatame, M. Taniguchi, S. Ueda, K. Kobayashi, R. Kainuma, T. Shishido, K. Fukushima, and T. Kanomata, Phys. Rev. Lett. 104, 176401 (2010) - Published April 26, 2010. Download PDF (free)

Provided by American Physical Society

3.7 /5 (3 votes)
add to favorites email to friend print save as pdf

Related Stories

Smart memory foam made smarter

Sep 24, 2009

Researchers from Northwestern University and Boise State University have figured out how to produce a less expensive shape-shifting "memory" foam, which could lead to more widespread applications of the material, such as ...

Precision control of movement in robots

May 16, 2008

A research team from the Department of Electricity and Electronics at the University of the Basque Country’s Faculty of Science and Technology in Leioa, Spain, led by Victor Etxebarria, is investigating the characteristics ...

Design tool for materials with a memory

Jul 13, 2009

Shape memory alloys can "remember" a condition. If they are deformed, a temperature change can be enough to bring them back to their original shape. A simulation calculates the characteristics of these materials.

Polymer remembers four shapes

Mar 15, 2010

(PhysOrg.com) -- A new study by General Motors has found that a polymer used commercially in fuel cell membranes can "memorize" four shapes, each assigned to a different temperature. The material could find ...

Greener memory from random motion

Mar 01, 2010

Random thermal fluctuations in magnetic memory can be harnessed to reduce the energy required to store information, according to an experiment reported in the current issue of Physical Review Letters. The de ...

Recommended for you

'Pixel' engineered electronics have growth potential

Sep 29, 2014

(Phys.org) —A little change in temperature makes a big difference for growing a new generation of hybrid atomic-layer structures, according to scientists at Rice University, Oak Ridge National Laboratory, ...

2-D materials' crystalline defects key to new properties

Sep 24, 2014

Understanding how atoms "glide" and "climb" on the surface of 2D crystals like tungsten disulphide may pave the way for researchers to develop materials with unusual or unique characteristics, according to an international ...

User comments : 0