Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs

Mar 31, 2010

Speciation begins when populations become genetically separated through a substantial reduction in gene flow, and it is at this point that a genetically cohesive set of populations attain the sole property of species: the independent evolution of a population-level lineage.

The comprehensive delimitation of species within biodiversity hotspots, regardless of their level of divergence, is important for understanding the factors that drive the diversification of biota and for identifying them as targets for conservation.

However, delimiting recently diverged species is challenging due to insufficient time for the differential evolution of characters—including morphological differences, , and gene tree monophyly—that are typically used as evidence for separately evolving lineages.

In this study, University of Kentucky researchers assembled multiple lines of evidence from the analysis of and nDNA sequence data for the delimitation of a high diversity of cryptically diverged population-level mouse lineages across the island of Madagascar. The study uses a multi-faceted approach that applies phylogenetic, population genetic, and genealogical analysis for recognizing lineage diversity and presents the most thoroughly sampled species delimitation of mouse lemur ever performed.

The resolution of a large number of geographically defined clades in the mtDNA gene tree provides strong initial evidence for recognizing a high diversity of population-level lineages in mouse lemurs. Researchers find additional support for lineage recognition in the striking concordance between mtDNA clades and patterns of nuclear . Lineages identified using these two sources of evidence also exhibit patterns of population divergence according to genealogical exclusivity estimates. Mouse lemur lineage diversity is reflected in both a geographically fine-scaled pattern of population divergence within established and geographically widespread taxa, as well as newly resolved patterns of microendemism revealed through expanded field sampling into previously poorly and well-sampled regions.

Explore further: Scientists tap trees' evolutionary databanks to discover environment adaptation strategies

More information: Weisrock DW, Rasoloarison RM, Fiorentino I, Ralison JM, Goodman SM, et al. (2010) Delimiting Species without Nuclear Monophyly in Madagascar's Mouse Lemurs. PLoS ONE 5(3): e9883. doi:10.1371/journal.pone.0009883

add to favorites email to friend print save as pdf

Related Stories

Lemur's evolutionary history may shed light on our own

Feb 25, 2008

After swabbing the cheeks of more than 200 lemurs and related primates to collect their DNA, researchers at the Duke Institute for Genome Sciences & Policy (IGSP) and Duke Lemur Center now have a much clearer ...

Shape-shifting coral evade identification

Feb 24, 2009

The evolutionary tendency of corals to alter their skeletal structure makes it difficult to assign them to different species. Researchers writing in the open access journal BMC Evolutionary Biology have used genetic marker ...

Recommended for you

Scientists target mess from Christmas tree needles

17 hours ago

The presents are unwrapped. The children's shrieks of delight are just a memory. Now it's time for another Yuletide tradition: cleaning up the needles that are falling off your Christmas tree.

Top Japan lab dismisses ground-breaking stem cell study

Dec 26, 2014

Japan's top research institute on Friday hammered the final nail in the coffin of what was once billed as a ground-breaking stem cell study, dismissing it as flawed and saying the work could have been fabricated.

Research sheds light on what causes cells to divide

Dec 24, 2014

When a rapidly-growing cell divides into two smaller cells, what triggers the split? Is it the size the growing cell eventually reaches? Or is the real trigger the time period over which the cell keeps growing ...

Locking mechanism found for 'scissors' that cut DNA

Dec 24, 2014

Researchers at Johns Hopkins have discovered what keeps an enzyme from becoming overzealous in its clipping of DNA. Since controlled clipping is required for the production of specialized immune system proteins, ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.