X-ray telescope to detect dark energy in space

Mar 16, 2010

It will be on board in 2012, when a Soyus-2 rocket carries an X-ray telescope into space to decode the nature of the universe's dark energy: an X-ray detector developed by the Max Planck Institute for Extraterrestrial Physics. Its challenging task is to detect the weak X-rays from celestial bodies, without being disturbed by the visible and UV light from billions of stars.

The has to be very sensitive in the wavelength range from under one to about 50 nm, while at the same time being practically blind up to several hundreds of nanometers in the adjacent range. Scientists of the Physikalisch-Technische Bundesanstalt (PTB) have now succeeded in precisely characterising the spectral sensitivity in this very broad range for the first time in the world. This was only possible, because two electron storage rings are available to PTB, which together ensure that all the required spectral ranges are available in a high quality.

So-called is responsible for the fact that the Universe is expanding continually and presumably with increasing speed. Astronomers and physicists want to find out what type of "energy" this is in the scope of the eRosita Project, by investigating the distribution of about 100 000 galaxy clusters and of millions of Black Holes in space with a group of seven X-ray telescopes. By using two electron storage rings, PTB scientists have proved that the X-ray detector meets its specifications:

With PTB's own Metrology Light Source, the shielding of perturbing UV and visible light was primarily investigated, while in the PTB lab at BESSY II in Berlin-Adlershof, the sensitivity of the detector in the soft X-ray range was detected.

The detector is a 450 micrometer thick pn-CCD chip illuminated from the rear, characterised by long-term stability and a high sensitivity to light. The detector has an ultra-thin pn-junction as an X-ray entrance window, to be able to provide evidence of - above all - radiation at low X-ray energies. A filter applied directly to the chip suppresses the perturbing radiation in the visible and in the UV ranges.

Several research institutes and companies are participating in eRosita under the auspices of the Max Planck Institute for . The project is financed by the German Aerospace Center (DLR).

Explore further: Rocky planets may orbit many double stars

Related Stories

Checking people at airports -- with terahertz radiation

Sep 18, 2008

Within the last few years the number of transport checks – above all at airports – has been increased considerably. A worthwhile effort as, after all, it concerns the protection of passengers. Possibilities for new and ...

UCSC physicists deliver detector for NASA's GLAST telescope

Nov 08, 2005

After more than a decade of work, a team led by physicists at the University of California, Santa Cruz, has completed a major detector subsystem for NASA's Gamma-ray Large Area Space Telescope (GLAST). Completion of the tracking ...

Searching the heavens -- GLAST

May 01, 2008

A new space mission, due to launch this month, is going to shed light on some of the most extreme astrophysical processes in nature - including pulsars, remnants of supernovae, and supermassive black holes. It could even ...

Black Holes in a radar trap

Feb 23, 2005

European astronomers succeeded for the first time to confirm the signatures predicted near Black Holes by Albert Einstein's theory of Relativity in the light of the cosmic X-ray background. The group of scientists ...

Recommended for you

Rocky planets may orbit many double stars

6 hours ago

Luke Skywalker's home in "Star Wars" is the desert planet Tatooine, with twin sunsets because it orbits two stars. So far, only uninhabitable gas-giant planets have been identified circling such binary stars, ...

Is the universe finite or infinite?

Mar 27, 2015

Two possiblities exist: either the Universe is finite and has a size, or it's infinite and goes on forever. Both possibilities have mind-bending implications.

'Teapot' nova begins to wane

Mar 27, 2015

A star, or nova, has appeared in the constellation of Sagittarius and, even though it is now waning, it is still bright enough to be visible in the sky over Perth through binoculars or a telescope.

Dark matter is darker than once thought

Mar 27, 2015

This panel of images represents a study of 72 colliding galaxy clusters conducted by a team of astronomers using NASA's Chandra X-ray Observatory and Hubble Space Telescope. The research sets new limits on ...

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.