Researchers describe how the cholera bacteria becomes infectious

Feb 12, 2010

In a new study, Dartmouth researchers describe the structure of a protein called ToxT that controls the virulent nature of Vibrio cholerae, the bacteria that causes cholera. Buried within ToxT, the researchers were surprised to find a fatty acid that appears to inhibit ToxT, which prevents the bacteria from causing cholera. Cholera, which causes acute diarrhea, can be life threatening, and, according to the World Health Organization, cholera remains a serious threat to global health.

Doctors have known that bile, found in the intestine, inhibits the expression of the virulence genes in V. cholerae, but until now, the mechanism behind this was not completely understood. This study provides a direct link between the environment of the gut and the regulation of virulence genes, and it also identifies the regulatory molecule.

"Finding a fatty acid in the structure was quite a surprise," says F. Jon Kull, associate professor of chemistry at Dartmouth and senior author on the paper. Kull is also a 1988 graduate of Dartmouth. "The exciting thing about this finding is that we might be able to use a small, natural molecule to treat and/or prevent . We will also use the structure of the fatty acid as a framework to try and design a small molecule inhibitor of ToxT."

The study, "Structure of ToxT reveals mechanism for fatty acid regulation of virulence genes," appeared in the online edition of the during the week of February 1.

Kull's co-authors on the paper are Michael Lowden and Maria Pellegrini with the Department of Chemistry at Dartmouth; Michael Chiorazzo, a summer undergraduate research fellow; and Karen Skorupski and Ronald Taylor with the Department of Microbiology and Immunology at Dartmouth Medical School.

The researchers used X-ray crystallography to determine the structure of ToxT. The process involves taking DNA from V. cholerae and using non-pathogenic E. coli to produce large amounts of the target protein, in this case, ToxT. Once protein has been purified, it is concentrated and crystallized. Then the crystal, which is an ordered array of protein molecules, is subjected to a powerful X-ray beam. The pattern of diffracted X-rays is collected on a detector and then analyzed using mathematical algorithms, eventually revealing the atomic structure of the protein.

Co-author Taylor also notes that "The results of the study are exciting from the points of view of both the mechanistic aspect of the complex regulation of V. cholerae virulence gene expression and the potential medical impact as we now move forward to apply this new knowledge to influence this mechanism to control infection in humans."

Explore further: Genomes of malaria-carrying mosquitoes sequenced

Provided by Dartmouth College

4.7 /5 (3 votes)

Related Stories

Cholera vaccine could protect affected communities

Nov 27, 2007

A vaccine used to protect travelers from cholera, an infection characterized by diarrhea and severe dehydration, could also be used effectively among those living in cholera-prone (endemic) areas, according to a research ...

Dartmouth researchers find new protein function

Jan 09, 2009

A group of Dartmouth researchers has found a new function for one of the proteins involved with chromosome segregation during cell division. Their finding adds to the growing knowledge about the fundamental ...

Vibrio bacteria found in Norwegian seafood and seawater

Feb 24, 2009

(PhysOrg.com) -- While working on her doctorate, Anette Bauer Ellingsen discovered potentially disease-causing vibrios (Vibrio cholerae, V. parahaemolyticus and V. vulnificus) in Norwegian seafood and inshore ...

Intestinal parasites alter immunity in cholera patients

Mar 31, 2009

Cholera patients also infected with parasitic intestinal worms have a significantly reduced immune response to the cholera toxin, according to a report published March 31st in the open-access journal PLoS Neglected Tropical Di ...

Recommended for you

Genomes of malaria-carrying mosquitoes sequenced

16 hours ago

Nora Besansky, O'Hara Professor of Biological Sciences at the University of Notre Dame and a member of the University's Eck Institute for Global Health, has led an international team of scientists in sequencing ...

How calcium regulates mitochondrial carrier proteins

Nov 26, 2014

Mitochondrial carriers are a family of proteins that play the key role of transporting a chemically diverse range of molecules across the inner mitochondrial membrane. Mitochondrial aspartate/glutamate carriers are part of ...

Team conducts unprecedented analysis of microbial ecosystem

Nov 26, 2014

An international team of scientists from the Translational Genomics Research Institute (TGen) and The Luxembourg Centre for Systems Biomedicine (LCSB) have completed a first-of-its-kind microbial analysis of a biological ...

Students create microbe to weaken superbug

Nov 25, 2014

A team of undergraduate students from the University of Waterloo have designed a synthetic organism that may one day help doctors treat MRSA, an antibiotic-resistant superbug.

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.