Super material will make lighting cheaper and fully recyclable

Feb 05, 2010

With the use of the new super material graphene, Swedish and American researchers have succeeded in producing a new type of lighting component. It is inexpensive to produce and can be fully recycled.

The invention, which paves the way for glowing wallpaper made entirely of plastic, is published in the scientific journal by scientists at Linköping University and Umea University, in Sweden, and Rutgers, The State University of New Jersey.

Ultra-thin and electricity-saving organic light diodes, so-called OLEDs, have recently been introduced commercially in mobile phones, cameras, and super-thin TVs. An OLED consists of a light-generating layer of plastic placed between two electrodes, one of which must be transparent. Today’s OLEDs have two drawbacks - they are relatively expensive to produce, and the transparent electrode consists of the metal alloy indium tin oxide. The latter presents a problem because indium is both rare and expensive and moreover is complicated to recycle. Now researchers at Linköping and Umeľ universities, working with American colleagues, are presenting an alternative to OLEDs, an organic light-emitting electrochemical cell (LEC). It is inexpensive to produce, and the transparent electrode is made of the carbon material graphene.

“This is a major step forward in the development of organic lighting components, from both a technological and an environmental perspective. Organic electronics components promise to become extremely common in exciting new applications in the future, but this can create major recycling problems. By using graphene instead of conventional metal electrodes, components of the future will be much easier to recycle and thereby environmentally attractive,” says one of the scientists, Nathaniel Robinson from Linköping University.

Since all the LEC’s parts can be produced from liquid solutions, it will also be possible to make LECs in a roll-to-roll process on, for example, a printing press in a highly cost-effective way.

“This paves the way for inexpensive production of entirely plastic-based lighting and display components in the form of large flexible sheets. This kind of illumination or display can be rolled up or can be applied as wallpaper or on ceilings,” says another of the scientists, Ludvig Edman from Umeľ University.

Graphene consists of a single layer of carbon atoms and has many attractive properties as an electronic material. It has high conductivity, is virtually transparent, and can moreover be produced as a solution in the form of graphene oxide.

Researchers all over the world have been trying to replace indium tin oxide for more than 15 years. Indium is in short supply, and the alloy has a complicated life cycle. The raw material for the fully organic and metal-free LEC, on the other hand, is inexhaustible and can be fully recycled - as fuel, for example.

Explore further: Nanomaterial outsmarts ions

More information: The study is published in the journal ACS Nano and is titled “Graphene and mobile ions: the key to all-plastic, solution-processed light-emitting devices.” pubs.acs.org/doi/abs/10.1021/nn9018569

Provided by Umea University

4.9 /5 (25 votes)

Related Stories

Will carbon nanotubes replace indium tin oxide?

Mar 09, 2009

(PhysOrg.com) -- Up until now, George Grüner tells PhysOrg.com, most of the studies regarding the properties - and uses - of carbon nanotubes have been restricted to the visible spectral range. “We, however, were intere ...

Next Generation Light Source

Nov 23, 2005

The Technische Universität Dresden partakes in one of the world’s largest projects on the development of innovative organic light-emitting diodes (OLEDs). Scientists at the Institute of Applied Photophysics have been developing ...

Sensor of plastic can be produced in a printing press

Feb 08, 2005

Electrochemical transistors made of plastic open myriad possibilities. Since both electrons and ions are active, they can function as a bridge between traditional electronics and biological systems. A new dissertation from ...

Recommended for you

Nanomaterial outsmarts ions

21 hours ago

Ions are an essential tool in chip manufacturing, but these electrically charged atoms can also be used to produce nano-sieves with homogeneously distributed pores. A particularly large number of electrons, ...

Making graphene in your kitchen

Apr 20, 2014

Graphene has been touted as a wonder material—the world's thinnest substance, but super-strong. Now scientists say it is so easy to make you could produce some in your kitchen.

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

plasticpower
4.5 / 5 (2) Feb 05, 2010
This is great news. OLED screens have unmatched picture quality, and I would love to see the day when my walls are made out of the stuff! Brings a whole new meaning to the words "xbox 360" :D
mrlewish
4 / 5 (1) Feb 06, 2010
A word of caution. I remember reading about OLED research back in the 90s. They said it would be much cheaper to produce once they got the production down... and the technicalities worked out. You can see how that turned out. inexpensive they said.
dan42day
3.3 / 5 (4) Feb 07, 2010
dirk -
You need to read the article about liquid glass, you'd almost have to assume that if you mixed it with graphene you would get fusion power AND warp drive.

More news stories

In the 'slime jungle' height matters

(Phys.org) —In communities of microbes, akin to 'slime jungles', cells evolve not just to grow faster than their rivals but also to push themselves to the surface of colonies where they gain the best access ...

Robot scouts rooms people can't enter

(Phys.org) —Firefighters, police officers and military personnel are often required to enter rooms with little information about what dangers might lie behind the door. A group of engineering students at ...

New alfalfa variety resists ravenous local pest

(Phys.org) —Cornell plant breeders have released a new alfalfa variety with some resistance against the alfalfa snout beetle, which has ravaged alfalfa fields in nine northern New York counties and across ...