Scientists observe super-massive black holes using Keck Observatory in Hawaii

Dec 10, 2009
UKIRT infrared images of the four target galaxies show them in near-infrared color, where the images at different infrared wavelengths are assigned to represent red, green and blue colors. Observations with the Keck Interferometer have resolved the inner structure of the bright nucleus in all the four galaxies. The inferred ring-like structure obtained for NGC 4151 at the top-left is depicted in the top-right panel. The ring radius is 0.13 light years, corresponding to an extremely small ~0.5 milli-arcsecond angular size on the sky. The distance to each galaxy is indicated in million light-years, together with the redshift (z) of each galaxy. Credit: M. Kishimoto, MPIfR

An international team of scientists has observed four super-massive black holes at the center of galaxies, which may provide new information on how these central black hole systems operate. Their findings are published in December's first issue of the journal Astronomy and Astrophysics.

These super-massive black holes at the center of galaxies are called . For the first time, the team observed a quasar with an active , as part of the group of four, which is located more than a billion light years from Earth. The scientists used the two Keck telescopes on top of Mauna Kea in Hawaii. These are the largest optical/infrared telescopes in the world.

The team also used the United Kingdom (UKIRT) to follow up the Keck observations, to obtain current near-infrared images of the target galaxies.

"Astronomers have been trying to see directly what exactly is going on in the vicinity of these accreting super-massive black holes," said co-author Robert Antonucci, a UC Santa Barbara astrophysicist.

He explained that the nuclei of many galaxies show intense radiation from X-ray to optical, infrared, and radio, where the nucleus may exhibit a strong jet -- a linear feature carrying particles and magnetic energy out from a central super-massive black hole. Scientists believe these active nuclei are powered by accreting super-massive black holes. The accreting gas and dust are especially bright in the optical and infrared regions of the electromagnetic spectrum.

Scientists can now separate the emission from the regions outside the black hole from that in the very close vicinity of the black hole. This is the location of the most interesting physical process, the actual swallowing of matter by the black hole. "While not resolving this extremely small region directly, we can now better subtract the contribution from surrounding matter when we take a spectrum of the black hole and its surroundings, isolating the spectrum from the matter actually being consumed and lost forever by the hole," said Antonucci.

To observe such a distant object sharply enough in infrared wavelengths requires the use of a telescope having a diameter of about 100 meters or more. Instead of building such a large infrared telescope, which is currently impossible, a more practical way is to combine the beams from two or more telescopes that are roughly 100 meters apart. This method, used in radio astronomy for decades, is new for the infrared part of the spectrum. This type of instrument is called a long-baseline interferometer.

The Keck telescopes are separated by 85 meters and can be used as an interferometer. Combining the light from the telescopes allows astronomers to detect an interference pattern of the two beams and infer what the black hole vicinity looks like, explained first author Makoto Kishimoto, of the Max Planck Institute for Radio Astronomy in Bonn, Germany.

Kishimoto and Antonucci have a longstanding research collaboration, which began with Kishimoto's post-doctoral fellowship with Antonucci in the UCSB Department of Physics a decade ago. Antonucci points out that most of the credit for this current work goes to Kishimoto.

In 2003, astronomer Mark Swain at the Jet Propulsion Laboratory and his collaborators used the Keck Interferometer to observe the material accreting around one super-massive black hole, called NGC 4151. This is one of the brightest in the optical and infrared wavelengths. The observations provided astronomers with the first direct clue about the inner region of a super-massive black hole system, said Antonucci.

"The results looked puzzling in 2003," said Kishimoto. "But with the new data and with more external information, we are quite sure of what we are seeing." According to the team's results, the Keck Interferometer has just begun to resolve the outer region of an active galactic nucleus's accreting gas, where co-existing dust grains are hot enough to evaporate, transitioning directly from a solid to a gas.

Source: University of California - Santa Barbara (news : web)

Explore further: Pushy neighbors force stellar twins to diverge

add to favorites email to friend print save as pdf

Related Stories

Discovery of new type of dust leads to new quasar ideas

Dec 22, 2004

In a paper published in the Astrophysical Journal, a team of astronomers led by Martin Gaskell of the University of Nebraska-Lincoln announced that they have detected evidence of a previously unlooked-for type of microscopic ...

Most Black Holes Might Come in Only Small and Large

Aug 20, 2008

(PhysOrg.com) -- Black holes are sometimes huge cosmic beasts, billions of times the mass of our sun, and sometimes petite with just a few times the sun's mass. But do black holes also come in size medium? ...

Galaxy Collision Switches on Black Hole

Dec 10, 2009

(PhysOrg.com) -- This composite image of data from three different telescopes shows an ongoing collision between two galaxies, NGC 6872 and IC 4970.

Recommended for you

ESO image: A study in scarlet

1 hour ago

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

16 hours ago

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

Pushy neighbors force stellar twins to diverge

23 hours ago

(Phys.org) —Much like an environment influences people, so too do cosmic communities affect even giant dazzling stars: Peering deep into the Milky Way galaxy's center from a high-flying observatory, Cornell ...

Image: Multiple protostars within IRAS 20324+4057

Apr 14, 2014

(Phys.org) —A bright blue tadpole appears to swim through the inky blackness of space. Known as IRAS 20324+4057 but dubbed "the Tadpole", this clump of gas and dust has given birth to a bright protostar, ...

Research group to study interstellar molecules

Apr 11, 2014

From April 2014, a new group will study interstellar molecules and use them to explore the entire star and planet formation process at the Max Planck Institute for Extraterrestrial Physics. Newly appointed ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
2 / 5 (4) Dec 10, 2009
Scientists have NOT observed black holes.

AGN (active galactic nuclei) are massive neutron stars powered by repulsive interactions between neutrons.

With kind regards,
Oliver K. Manuel
Former NASA PI for Apollo

yyz
5 / 5 (1) Dec 11, 2009
Using optical interferometry to observe active galactic nuclei is a relatively new (and complicated) technique. But the payoff, as seen here, may lead to a better understanding of how our universe works. Coupled with other observations at other wavelengths, scientists are poised to get their best views yet of the inner accretion disks of supermassive black holes.

Planning has also begun to directly image the event horizon of the SMBH Sgr A* in our own galaxy using submillimeter wavelength interferometry. Possibly in the next ten years this ambitious goal will be achieved. Details here: http://arxiv.org/...3899.pdf .
yyz
5 / 5 (1) Dec 11, 2009
Scientists have NOT observed neutron stars, especially billion solar mass neutron stars.

More news stories

ESO image: A study in scarlet

This new image from ESO's La Silla Observatory in Chile reveals a cloud of hydrogen called Gum 41. In the middle of this little-known nebula, brilliant hot young stars are giving off energetic radiation that ...

Astronomers: 'Tilt-a-worlds' could harbor life

A fluctuating tilt in a planet's orbit does not preclude the possibility of life, according to new research by astronomers at the University of Washington, Utah's Weber State University and NASA. In fact, ...

NASA Cassini images may reveal birth of a Saturn moon

(Phys.org) —NASA's Cassini spacecraft has documented the formation of a small icy object within the rings of Saturn that may be a new moon, and may also provide clues to the formation of the planet's known ...

First direct observations of excitons in motion achieved

A quasiparticle called an exciton—responsible for the transfer of energy within devices such as solar cells, LEDs, and semiconductor circuits—has been understood theoretically for decades. But exciton movement within ...

Patent talk: Google sharpens contact lens vision

(Phys.org) —A report from Patent Bolt brings us one step closer to what Google may have in mind in developing smart contact lenses. According to the discussion Google is interested in the concept of contact ...

Warm US West, cold East: A 4,000-year pattern

Last winter's curvy jet stream pattern brought mild temperatures to western North America and harsh cold to the East. A University of Utah-led study shows that pattern became more pronounced 4,000 years ago, ...

Tech giants look to skies to spread Internet

The shortest path to the Internet for some remote corners of the world may be through the skies. That is the message from US tech giants seeking to spread the online gospel to hard-to-reach regions.