'Safety valve' protects photosynthesis from too much light

Nov 25, 2009

Photosynthetic organisms need to cope with a wide range of light intensities, which can change over timescales of seconds to minutes. Too much light can damage the photosynthetic machinery and cause cell death. Scientists at the Carnegie Institution were part of a team that found that specific proteins in algae can act as a safety valve to dissipate excess absorbed light energy before it can wreak havoc in cells.

The research, performed mostly by Graham Peers in the laboratory of Krishna Niyogi from the University of California, Berkeley, included researchers at the University of Münster, Germany, and used a mutant strain of the single-celled green alga Chlamydomonas reinhardtii, originally isolated at the Carnegie Institution, to show that a specific protein of the light harvesting family of proteins plays a critical role in eliminating excess absorbed light energy. A mutant lacking this protein, designated LHCSR, suffered severely when exposed to fluctuating light conditions.

"Photosynthetic organisms must be able to manage absorbed light energy," says study co-author Arthur Grossman of Carnegie's Department of Plant Biology, "and the LHCSR proteins appear to be critical for to eliminate absorbed light energy as heat as light levels in the environment fluctuate, becoming potentially toxic."

Grossman points out that photosynthetic organisms have developed a number of different mechanisms for managing the absorption of light energy and that these different mechanisms may be tailored to the diversity of environments in which organisms have evolved. Some have evolved in deserts where both light levels and temperatures can be very high while others have evolved in alpine environments where the light levels can be very high and temperatures very low.

"As we understand more about the ways in which the environment impacts the evolution of the photosynthetic machinery, we may be able to introduce specific mechanisms into plants that allow them to better manage absorbed light energy, which in turn would let them survive harsher environmental conditions" Grossman says, "which would have obvious benefits for agriculture."

He also notes the current interest in using algae to generate biofuels, and the possibility of cultivating algae in deserts, where solar input can be extremely high. As he states, "If we are going to attempt this we have to make sure that we use the right algae that can thrive and produce oils at high levels under harsh environmental conditions. It's possible that we can also tailor various features of the photosynthetic machinery to let algae use light energy more efficiently and suffer less damage under extremely high light and temperature conditions, but I would emphasize that there are many extreme challenges associated with the creation of such robust, commercially viable strains."

More information: The research appears in the 26 November issue of Nature.

Source: Carnegie Institution

Explore further: Researchers discover new strategy germs use to invade cells

add to favorites email to friend print save as pdf

Related Stories

New twist on life's power source

Mar 11, 2008

A startling discovery by scientists at the Carnegie Institution puts a new twist on photosynthesis, arguably the most important biological process on Earth. Photosynthesis by plants, algae, and some bacteria supports nearly ...

New Possibilities for Hydrogen-Producing Algae

Mar 30, 2009

(PhysOrg.com) -- Photosynthesis produces the food that we eat and the oxygen that we breathe ― could it also help satisfy our future energy needs by producing clean-burning hydrogen? Researchers studying ...

New possibilities for hydrogen-producing algae

Mar 24, 2009

Photosynthesis produces the food that we eat and the oxygen that we breathe ― could it also help satisfy our future energy needs by producing clean-burning hydrogen? Researchers studying a hydrogen-producing, single-celled ...

Learning to live with oxygen on early Earth

Oct 16, 2006

Scientists at the Carnegie Institution and Penn State University have discovered evidence showing that microbes adapted to living with oxygen 2.72 billion years ago, at least 300 million years before the rise of oxygen in ...

Scientists Sequence Genome of Soil-Dwelling Green Alga

Oct 11, 2007

The genome analysis of a tiny green alga has uncovered hundreds of genes that are uniquely associated with carbon dioxide capture and generation of biomass. Among the 15,000-plus genes revealed in the study ...

Researchers identify photosynthetic dimmer switch

May 08, 2008

In a study of the molecular mechanisms by which plants protect themselves from oxidation damage should they absorb too much sunlight during photosynthesis, a team of researchers has discovered a molecular ...

Recommended for you

Researchers discover new strategy germs use to invade cells

20 hours ago

The hospital germ Pseudomonas aeruginosa wraps itself into the membrane of human cells: A team led by Dr. Thorsten Eierhoff and Junior Professor Dr. Winfried Römer from the Institute of Biology II, members of the Cluster ...

Progress in the fight against harmful fungi

20 hours ago

A group of researchers at the Max F. Perutz Laboratories has created one of the three world's largest gene libraries for the Candida glabrata yeast, which is harmful to humans. Molecular analysis of the Candida ...

How steroid hormones enable plants to grow

Aug 19, 2014

Plants can adapt extremely quickly to changes in their environment. Hormones, chemical messengers that are activated in direct response to light and temperature stimuli help them achieve this. Plant steroid ...

Surviving the attack of killer microbes

Aug 19, 2014

The ability to find food and avoid predation dictates whether most organisms live to spread their genes to the next generation or die trying. But for some species of microbe, a unique virus changes the rules ...

Histones and the mystery of cell proliferation

Aug 19, 2014

Before cells divide, they create so much genetic material that it must be wound onto spools before the two new cells can split apart. These spools are actually proteins called histones, and they must multiply ...

User comments : 0