Switchgrass produces biomass efficiently

Nov 23, 2009

A USDOE and USDA study concluded that 50 million U.S. acres of cropland, idle cropland, and cropland pasture could be converted from current uses to the production of perennial grasses, such as switchgrass, from which biomass could be harvested for use as a biofuel feedstock. Economically viable production of a perennial grass monoculture from which substantial quantities of biomass are removed annually is expected to require nitrogen fertilizer.

An agronomist at Oklahoma State University, Regents Professor Emeritus Charles Taliaferro, designed and conducted an experiment to determine yield from alternative levels of for a single and double harvest per year system for four perennial grass species (bermudagrass, flaccidgrass, lovegrass, and ). Agricultural economics graduate student, Mohua Haque, used the data produced in the field experiments to determine the most economical species, level of nitrogen, and harvest frequency for several sets of nitrogen fertilizer prices and hypothetical biomass prices. The study was funded by the USDA Cooperative State Research, Education, and Extension Service and by Oklahoma State University. Results from the study were published in the November-December issue of the .

Haque explains, "For the soil and weather conditions that prevailed at the experiment site for the duration of the study, switchgrass clearly produced more dry biomass per dollar cost than the other three species. If perennial grass for biofuel feedstock is the best alternative for a field, and if the biomass price exceeds the cost of production, the optimal strategy would be to establish switchgrass, and in post-establishment years, to fertilize with 60 pounds of nitrogen per acre per year, and to harvest once per year after senescence."

If an economically viable system for conversion of biomass from perennial grasses to biofuels is developed, millions of acres may be bid from current uses and seeded to switchgrass.

Results from the study will be incorporated into a model at Oklahoma State University to evaluate the economic potential of alternative cellulosic biofuels production systems for Oklahoma. The goal of the research effort is to construct and solve models to determine the optimal number, size, and locations of cellulosic biorefineries, feedstock production counties, harvest months, fertilizer levels, number of harvest machines, storage strategy, and transportation flows.

More information: The scientific article is available for no charge for 30 days following the date of this summary. View the abstract at agron.scijournals.org/cgi/cont… /abstract/101/6/1463 .

Source: American Society of Agronomy

Explore further: Leave that iguana in the jungle, expert tells Costa Rica

add to favorites email to friend print save as pdf

Related Stories

Which grass is greener to power the bioenergy era?

Oct 03, 2008

(PhysOrg.com) -- Talk about a field of dreams. Cornell bioenergy plant experts are learning which field grasses are the best candidates for "dedicated energy" crops in the Northeast, considering the region's ...

Researchers pursue grasses as Earth-friendly biofuel

Jul 21, 2008

(PhysOrg.com) -- At a small site on the Batavia campus of Fermilab, ecologist Julie Jastrow of Argonne National Laboratory pushes the scientific frontier in a new and exciting way: She watches the grass grow.

Fueling ethanol production while protecting water quality

Apr 01, 2008

Grain-based ethanol production has increased dramatically in recent years as the cost and instability of oil has increased. New U.S. government policies require major increases in ethanol production. While future plans call ...

Recommended for you

Team defines new biodiversity metric

Aug 29, 2014

To understand how the repeated climatic shifts over the last 120,000 years may have influenced today's patterns of genetic diversity, a team of researchers led by City College of New York biologist Dr. Ana ...

Changes in farming and climate hurting British moths

Aug 29, 2014

Britain's moths are feeling the pinch – threatened on one side by climate change and on the other by habitat loss and harmful farming methods. A new study gives the most comprehensive picture yet of trends ...

User comments : 0