Computer Based on Insights From The Brain Moves Closer to Reality

Nov 18, 2009
BlueMatter, a new algorithm created in collaboration with Stanford University, exploits the Blue Gene supercomputing architecture in order to noninvasively measure and map the connections between all cortical and sub-cortical locations within the human brain using magnetic resonance diffusion weighted imaging. Mapping the wiring diagram of the brain is crucial to untangling its vast communication network and understanding how it represents and processes information.

(PhysOrg.com) -- Today at SC 09, the supercomputing conference, IBM announced significant progress toward creating a computer system that simulates and emulates the brain's abilities for sensation, perception, action, interaction and cognition, while rivaling the brain's low power and energy consumption and compact size.

The cognitive computing team, led by IBM Research, has achieved significant advances in large-scale cortical simulation and a new algorithm that synthesizes neurological data -- two major milestones that indicate the feasibility of building a cognitive computing chip.

Scientists, at IBM Research - Almaden, in collaboration with colleagues from Lawrence Berkeley National Lab, have performed the first near real-time cortical simulation of the brain that exceeds the scale of a cat cortex and contains 1 billion spiking neurons and 10 trillion individual learning synapses.

Additionally, in collaboration with researchers from Stanford University, IBM scientists have developed an algorithm that exploits the Blue Gene® architecture in order to noninvasively measure and map the connections between all cortical and sub-cortical locations within the human brain using magnetic resonance diffusion weighted imaging. Mapping the wiring diagram of the brain is crucial to untangling its vast communication network and understanding how it represents and processes information.

These advancements will provide a unique workbench for exploring the computational dynamics of the brain, and stand to move the team closer to its goal of building a compact, low-power synaptronic chip using nanotechnology and advances in phase change memory and magnetic tunnel junctions. The team’s work stands to break the mold of conventional von Neumann computing, in order to meet the system requirements of the instrumented and interconnected world of tomorrow.

As the amount of digital data that we create continues to grow massively and the world becomes more instrumented and interconnected, there is a need for new kinds of computing systems - imbued with a new intelligence that can spot hard-to-find patterns in vastly varied kinds of data, both digital and sensory; analyze and integrate information real-time in a context-dependent way; and deal with the ambiguity found in complex, real-world environments.

Businesses will simultaneously need to monitor, prioritize, adapt and make rapid decisions based on ever-growing streams of critical data and information. A cognitive computer could quickly and accurately put together the disparate pieces of this complex puzzle, while taking into account context and previous experience, to help business decision makers come to a logical response.

“Learning from the brain is an attractive way to overcome power and density challenges faced in computing today,” said Josephine Cheng, IBM Fellow and lab director of IBM Research - Almaden. “As the digital and physical worlds continue to merge and computing becomes more embedded in the fabric of our daily lives, it’s imperative that we create a more intelligent computing system that can help us make sense the vast amount of information that's increasingly available to us, much the way our brains can quickly interpret and act on complex tasks.”

To perform the first near real-time cortical simulation of the brain that exceed the scale of the cat cortex, the team built a cortical simulator that incorporates a number of innovations in computation, memory, and communication as well as sophisticated biological details from neurophysiology and neuroanatomy. This scientific tool, akin to a linear accelerator or an electron microscope, is a critical instrument used to test hypotheses of brain structure, dynamics and function. The simulation was performed using the cortical simulator on Lawrence Livermore National Lab’s Dawn /P supercomputer with 147,456 CPUs and 144 terabytes of main memory.

The algorithm, when combined with the cortical simulator, allows scientists to experiment with various mathematical hypotheses of brain function and structure of how structure affects function as they work toward discovering the brain’s core computational micro and macro circuits.

After the successful completion of Phase 0, IBM and its university partners were recently awarded $16.1M in additional funding from the Defense Advanced Research Projects Agency (DARPA) for Phase 1 of DARPA’s Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) initiative. This phase of research will focus on the components, brain-like architecture and simulations to build a prototype chip. The long-term mission of IBM’s cognitive computing initiative is to discover and demonstrate the algorithms of the brain and deliver low-power, compact cognitive computers that approach mammalian-scale intelligence and use significantly less energy than today’s computing systems. The world-class team includes researchers from several of IBM’s worldwide research labs and scientists from Stanford University, University of Wisconsin-Madison, Cornell University, Columbia University Medical Center and University of California- Merced.

“The goal of the SyNAPSE program is to create new electronics hardware and architecture that can understand, adapt and respond to an informative environment in ways that extend traditional computation to include fundamentally different capabilities found in biological brains,” said DARPA program manager Todd Hylton, Ph.D.

Modern computing is based on a stored program model, which has traditionally been implemented in digital, synchronous, serial, centralized, fast, hardwired, general-purpose circuits with explicit memory addressing that indiscriminately over-write data and impose a dichotomy between computation and data. In stark contrast, cognitive computing - like the - will use replicated computational units, neurons and synapses that are implemented in mixed-mode analog-digital, asynchronous, parallel, distributed, slow, reconfigurable, specialized and fault-tolerant biological substrates with implicit memory addressing that only update state when information changes, blurring the boundary between computation and data.

More information: Technical insight and more details on the SyNAPSE project and recent milestones can be found on the Cognitive Computing blog at modha.org/ .

Source: IBM

Explore further: UT Dallas professor to develop framework to protect computers' cores

add to favorites email to friend print save as pdf

Related Stories

IBM: World's most powerful computer

Nov 14, 2005

The TOP500 Organization, which tracks high performance computing, Monday named an IBM supercomputing system as the world's most powerful supercomputer. IBM said its Blue Gene/L has an unprecedented sustained performance of ...

IBM Unveils Revolutionary Cell Broadband Engine Computer

Feb 08, 2006

At a press conference in New York today, IBM introduced a blade computing system based on the Cell Broadband Engine (Cell BE). The IBM branded Cell BE-based system is designed for businesses that need the dense ...

IBM Claims Its BlueGene Supercomputer Is the Fastest

Sep 30, 2004

IBM Corp. on Wednesday said it has developed the world's fastest computer – a 16,000-processor version of its BlueGene/L supercomputer. BlueGene was able to achieve a sustained performance of 36.01 TFLOPS, ove ...

Recommended for you

User comments : 4

Adjust slider to filter visible comments by rank

Display comments: newest first

fuzz54
3.5 / 5 (2) Nov 18, 2009
I'm 33 years old. I think it's feasible by the time I'm 75 that this kind of technology will allow for braing scanning and download. And of course I could be completely wrong since going more than 15 years into the future is usually pointless, but think of the implications. I would have to think long and hard before I'd download into a computer though.
Buyck
3 / 5 (2) Nov 18, 2009
This is amazing progress and the good news is that we have by 8 to 10 years supercomputers that will simulate the brain in "real time". This opens new fields to intelligent machines and to improve the brain of people with autism, schizofrenia, dementia, pedophiles, depressions, dyslexia and so on. This will improve performance of the human species. We can scan the brain and develop a model of the patient and improve it by detailled software and filtering out the errors.
extropian58
3 / 5 (1) Nov 18, 2009
It appears that there is no turning back as far as the development of intelligent machines is concerned. What might behoove us to do at this point is to make sure that we will be able to maintain control of our new "creations". That we can do this is not a given but now is the time to start. Just a thought.........
el_gramador
not rated yet Nov 21, 2009
Just a thought...but is it possible to make a fractal like system with the program models?

More news stories

Ex-Apple chief plans mobile phone for India

Former Apple chief executive John Sculley, whose marketing skills helped bring the personal computer to desktops worldwide, says he plans to launch a mobile phone in India to exploit its still largely untapped ...

Airbnb rental site raises $450 mn

Online lodging listings website Airbnb inked a $450 million funding deal with investors led by TPG, a source close to the matter said Friday.

Health care site flagged in Heartbleed review

People with accounts on the enrollment website for President Barack Obama's signature health care law are being told to change their passwords following an administration-wide review of the government's vulnerability to the ...

A homemade solar lamp for developing countries

(Phys.org) —The solar lamp developed by the start-up LEDsafari is a more effective, safer, and less expensive form of illumination than the traditional oil lamp currently used by more than one billion people ...

NASA's space station Robonaut finally getting legs

Robonaut, the first out-of-this-world humanoid, is finally getting its space legs. For three years, Robonaut has had to manage from the waist up. This new pair of legs means the experimental robot—now stuck ...

Filipino tests negative for Middle East virus

A Filipino nurse who tested positive for the Middle East virus has been found free of infection in a subsequent examination after he returned home, Philippine health officials said Saturday.

Egypt archaeologists find ancient writer's tomb

Egypt's minister of antiquities says a team of Spanish archaeologists has discovered two tombs in the southern part of the country, one of them belonging to a writer and containing a trove of artifacts including reed pens ...