The Future in Two Words: Ionic Liquids

Nov 13, 2009

(PhysOrg.com) -- Ionic liquids are molecular solutions that have a wide range of potential applications, including next-generation solar cells, hydrogen fuel cells and lithium batteries.

As a neighbor tells a young Dustin Hoffman in The Graduate, “I just want to say one word to you - just one word: plastics. There’s a great future in plastics.” Well maybe so, but Rutgers Chemistry Professor Ed Castner thinks there is a great future in two words: ionic liquids.

These molecular soups can be many things to many people in many different applications, including next-generation , hydrogen fuel cells and lithium batteries. This may be what caught the eye of the U.S. Department of Energy, awarding Castner and his colleagues a grant for $2.4 million to delve into the nature of charge-transfer properties of ionic liquids. Previously, his Rutgers ionic liquids research was supported by the American Chemical Society’s Petroleum Research Fund. In addition to the new DOE funding, the Rutgers ionic liquids fundamental research is also currently funded by the National Science Foundation.

Ionic liquids by definition contain ions - atoms positively or negatively charged because they have too few or too many electrons or some other imbalance in their charge. Even with this imbalance, these ions are stable and exist freely in a solution, not bound to any other atoms as they would be in neutral (uncharged) compounds.

Successful with the DOE proposal, Castner is now the lead principal investigator on a three-year DOE-funded program. With his four co-principal investigators from Penn State, University of Iowa, University of Minnesota and Brookhaven National Laboratory, Castner and his Rutgers colleagues have assembled a top research team for investigating the properties of ionic liquids.

Batteries are a key , but they can only charge and discharge their electrical energy relatively slowly - think how a cell phone or computer takes hours to recharge. When the sun rises or sets on the Rutgers Solar Farm on the Livingston Campus, or when a hybrid car like a Toyota Prius uses regenerative braking technology, high performance capacitors are required.

The Future in Two Words: Ionic Liquids
Solar panel farm on the Rutgers Livingston Campus

New supercapacitors and ultracapacitors based on ionic liquid technology will do an even better job than the current technologies. Castner hopes to merge their basic science projects for understanding ionic liquids to help the Rutgers Energy Storage Research Group develop next-generation ultracapacitors and batteries.

Hydrogen fuel cells, a potential successor to conventional batteries, work best at temperatures well above the boiling point of water; evaporative losses can damage the device performance. Because ionic liquids almost never boil and are stable to high temperatures, fuel cells based on are expected to display enhanced performance.

Provided by Rutgers, The State University of New Jersey

Explore further: Research pinpoints role of 'helper' atoms in oxygen release

add to favorites email to friend print save as pdf

Related Stories

Ionic Liquid's Makeup Measurably Non-Uniform at the Nanoscale

Nov 10, 2009

(PhysOrg.com) -- Researchers at Texas Tech University, Queen's University in Belfast, Ireland, the University of Rome and the National Research Council in Italy recently made a discovery about the non-uniform chemical compositions ...

Chemists look for cleaner, cheaper rocket fuel

Dec 02, 2008

(PhysOrg.com) -- Mark Gordon recently held up a small vial containing three liquids layered one on top of another. That middle layer, the brownish one, is an ionic liquid, Gordon explained.

New Web database improves access to ionic liquid data

Aug 18, 2006

Chemical engineers and others designing "green" industrial processes using new ionic liquid solvents now have an important new resource, an on-line database of physical properties developed by the National Institute of Standards ...

Recommended for you

New star-shaped molecule breakthrough

Sep 22, 2014

(Phys.org) —Scientists at The University of Manchester have generated a new star-shaped molecule made up of interlocking rings, which is the most complex of its kind ever created.

Smartgels are thicker than water

Sep 19, 2014

Transforming substances from liquids into gels plays an important role across many industries, including cosmetics, medicine, and energy. But the transformation process, called gelation, where manufacturers ...

Separation of para and ortho water

Sep 18, 2014

(Phys.org) —Not all water is equal—at least not at the molecular level. There are two versions of the water molecule, para and ortho water, in which the spin states of the hydrogen nuclei are different. ...

User comments : 0