German high-school students involved in an astronomical research project

Nov 05, 2009

This week, Astronomy & Astrophysics publishes a somewhat unusual research article because it is co-authored by German high-school students. Led by astronomer Klaus Beuermann (University of Göttingen, Germany), the team involves a secondary school physics teacher, three students from two high schools in Göttingen, and three professional astronomers.

The team made use of a remotely-controlled 1.2-meter telescope in Texas, funded by the Alfried Krupp von Bohlen und Halbach Foundation for the expressed purpose of making such resources available to schools as well as professional astronomers. The students, S. Paik, A.-M. Ploch, and J. Zachmann, and their teacher, J. Diese, observed the light variations of the faint (19th magnitude) cataclysmic variable EK Ursae Majoris (EK UMa) over two months.

Cataclysmic variable research is a field where the contributions of small telescopes has a long tradition. Cataclysmic variables are extremely close binary systems containing a low-mass star whose material is being stripped off by the gravitational pull of a white dwarf companion. Due to the transfer of matter between the stars, these systems vary dramatically in brightness on timescales in the whole range between seconds and years. This largely unpredictable variability makes them ideal targets for school projects, particularly since professional observatories are generally unable to provide enough observation time for regular monitoring.

An accurate ephemeris is needed to keep track of the orbital motions of the two stars, but none was available because EK UMa is faint in the optical range and requires a long-term observation of the light variations. The strong magnetic field of the white dwarf turns the light of the hot matter striking the surface of the white dwarf into two "lighthouse" beams. By measuring the times of the minimum between the beams, the group was able to determine an orbital period accurate enough to keep track of the eclipse that took place in 1985, over 100 000 cycles earlier. By combining their own measurements with those made by the Einstein, ROSAT, and EUVE satellites, they estimated the orbital period over 137 000 cycles to an accuracy of a tenth of a millisecond. Surprisingly, the orbital period is extremely stable, although the period of such very close binaries is expected to vary due to the presence of third bodies and magnetic activity cycles on the companion star.

The pupils were involved in the various tasks of the research project: observations, analysis of the CCD images, production and interpretation of light curves, and access to the archival satellite data. They participated in all the steps of a real research program, from initial observations to the publication process, and the result they obtained bears scientific significance. Team leader K. Beuermann concluded: "Although it is fun to perform one's own remote observations with a professional telescope from the comfort of a normal school classroom, it is even more satisfying to be involved in a project that provides new and publishable results rather than to perform experiments with predictable outcomes."

Source: Astronomy & Astrophysics

Explore further: Computer model shows moon's core surrounded by liquid and it's caused by Earth's gravity

add to favorites email to friend print save as pdf

Related Stories

Unusual Binary Star: White Dwarf With a Cool Companion

Mar 23, 2006

An international researcher team under the direction of Dr. Thorsten Nagel of the Institute for Astronomy and Astrophysics of the University of Tübingen recently discovered an unusual close binary star system. It consists ...

The hottest white dwarf in its class

Dec 12, 2008

( -- A team of German and American astronomers present far-ultraviolet observations of white dwarf KPD 0005+5106 and reveal that it is among the hottest stars ever known with a temperature of 200 ...

Stars Flood Space with Gravitational Waves

May 30, 2005

A scientist using NASA's Chandra X-ray Observatory has found evidence that two white dwarf stars are orbiting each other in a death grip, destined to merge. The data indicate gravitational waves are carrying energy away fro ...

Recommended for you

Titan offers clues to atmospheres of hazy planets

14 hours ago

When hazy planets pass across the face of their star, a curious thing happens. Astronomers are not able to see any changes in the range of light coming from the star and planet system.

Having fun with the equation of time

14 hours ago

If you're like us, you might've looked at a globe of the Earth in elementary school long before the days of Google Earth and wondered just what that strange looking figure eight thing on its side was.

The source of the sky's X-ray glow

Jul 27, 2014

In findings that help astrophysicists understand our corner of the galaxy, an international research team has shown that the soft X-ray glow blanketing the sky comes from both inside and outside the solar system.

User comments : 0