Hybrid molecules show promise for exploring, treating Alzheimer's

Nov 04, 2009

One of the many mysteries of Alzheimer's disease is how protein-like snippets called amyloid-beta peptides, which clump together to form plaques in the brain, may cause cell death, leading to the disease's devastating symptoms of memory loss and other mental difficulties.

In order to answer that key question and develop new approaches to preventing the damage, scientists must first understand how amyloid-beta forms the telltale clumps.

University of Michigan researchers have developed new molecular tools that can be used to investigate the process. The molecules also hold promise in Alzheimer's disease treatment. The research, led by assistant professor Mi Hee Lim, was published online this week in the Journal of the American Chemical Society.

Though the exact mechanism for amyloid-beta clump formation isn't known, scientists do know that copper and zinc ions are somehow involved, not only in the aggregation process, but apparently also in the resulting injury. Copper, in particular, has been implicated in generating , which can cause cell damage.

One way of studying the role of metals in the process is by sopping up the with molecules called chelators and then seeing what happens when the metal ions are out of the picture. When other scientists have done this they've found that chelators, by removing metals, hamper both amyloid beta clumping and the production of those harmful reactive oxygen species, suggesting that chelators could be useful in treating Alzheimer's disease.

However, most known chelators can't cross the blood-brain barrier, the barricade of cells that separates from circulating blood, protecting the brain from harmful substances in the bloodstream. What's more, most chelators aren't precise enough to target only the metal ions in amyloid-beta; they're just as likely to grab and disable metals performing vital roles in other biological systems.

Lim and coworkers used a new strategy to develop "bi-functional" small molecules that not only grab metal ions, but also interact with amyloid-beta.

"The idea is simple," said Lim, who has joint appointments in the Department of Chemistry and the Life Sciences Institute. "We found molecules known for amyloid-beta recognition and then attached metal binding sites to them." In collaboration with Ayyalusamy Ramamoorthy, professor of chemistry and associate professor of biophysics, Lim then used NMR spectroscopy to confirm that the new, hybrid molecules still interacted with amyloid-beta.

In experiments in solutions with or without living cells, the researchers showed that the bi-functional molecules were able to regulate copper-induced amyloid-beta aggregation, not only disrupting the formation of clumps, but also breaking up clumps that already had formed. In fact, their molecules performed better than clioquinol, a clinically-available metal chelator that showed promise in early trials with Alzheimer's patients, but has side effects that limit its long-term use.

"Based on their small size and other properties, we believe our compounds will be able to cross the blood-brain barrier, but we want to confirm that using mouse models," Lim said. The researchers also plan experiments to see if their new chelators are as good at preventing and breaking up amyloid-beta plaques in the brains of mice as they are in solutions and cultured cells.

More information: ---http://pubs.acs.org/journal/jacsat

Source: University of Michigan (news : web)

Explore further: Estrogen helps calm stressed cells, researchers find

add to favorites email to friend print save as pdf

Related Stories

Anti-inflammatory drug blocks brain plaques

Jun 24, 2008

Brain destruction in Alzheimer's disease is caused by the build-up of a protein called amyloid beta in the brain, which triggers damaging inflammation and the destruction of nerve cells. Scientists had previously shown that ...

Enzyme may be a key to Alzheimer's-related cell death

Oct 06, 2009

(PhysOrg.com) -- A Purdue University researcher has discovered that the amount of an enzyme present in neurons can affect the mechanism thought to cause cell death in Alzheimer's disease patients and may have ...

Alzheimer's prevention role discovered for prions

Jul 03, 2007

A role for prion proteins, the much debated agents of mad cow disease and vCJD, has been identified. It appears that the normal prions produced by the body help to prevent the plaques that build up in the brain to cause Alzheimer’s ...

QBI neuroscientists make Alzheimer's disease advance

Jun 10, 2008

Queensland Brain Institute (QBI) neuroscientists at UQ have discovered a new way to reduce neuronal loss in the brain of a person with Alzheimer's disease. Memory loss in people with Alzheimer's disease can be attributed ...

Researchers find new piece in Alzheimer's puzzle

Feb 25, 2009

Yale researchers have filled in a missing gap on the molecular road map of Alzheimer's disease. In the Feb. 26 issue of the journal Nature, the Yale team reports that cellular prion proteins trigger the process by which ...

Recommended for you

A refined approach to proteins at low resolution

Sep 19, 2014

Membrane proteins and large protein complexes are notoriously difficult to study with X-ray crystallography, not least because they are often very difficult, if not impossible, to crystallize, but also because ...

Base-pairing protects DNA from UV damage

Sep 19, 2014

Ludwig Maximilian University of Munich researchers have discovered a further function of the base-pairing that holds the two strands of the DNA double helix together: it plays a crucial role in protecting ...

User comments : 0