Bacterium with grabber arms stops intruders

Oct 16, 2009

Bacteria in drinks such as Vifit stop pathogens by using grabber-like arms to cling onto intestinal walls. This discovery is made by a group of Finnish, Belgium and Dutch researchers, under the coordination of Prof. Willem de Vos of the Laboratory of Microbiology (Wageningen University, The Netherlands). The results were published in the Proceedings of the National Academy of Sciences late last week.

The Lactobacillus rhamnosus GG (LGG) bacterium, often found in bacteria drinks such as Vifit, has gained a reputation worldwide for its positive health effects. That LGG makes the intestinal wall less penetrable for intruders is a fact which researchers have known for some time. 'LGG has an impeccable character', says de Vos. 'Its health effects have been proven again and again; we just didn't know how it works.'

It appears that LGG has grabber-like arms called 'pili' with a binding protein at their bases which enables them to adhere to the intestinal mucus lining. In so doing, the bacterium protects the and reinforces the barrier function of the intestine. Other bacteria strains or mutants without pili or binding protein are present in the intestine for much shorter periods.

'By binding to the intestinal mucus membrane, LGG remains longer - and therefore is longer active - in the intestine', explains de Vos. 'We think that LGG competes with pathogens which also adhere to the mucus membrane. The pathogens are defeated when there are sufficient LGG bacteria in the intestine: competitive exclusion.'

Now that the mechanism of the health effects of LGG is known, it seems logical to search for an LGG-variant which can stay in the intestine even longer.

'We could work on an LGG bacterium with more of that , which enables it to be longer active in the intestine', says de Vos. 'That can be done with genetic modification, but traditional selection methods can also be used to pick out with this protein.'

Provided by Wageningen University

Explore further: For cells, internal stress leads to unique shapes

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

For cells, internal stress leads to unique shapes

5 hours ago

From far away, the top of a leaf looks like one seamless surface; however, up close, that smooth exterior is actually made up of a patchwork of cells in a variety of shapes and sizes. Interested in how these ...

Adventurous bacteria

6 hours ago

To reproduce or to conquer the world? Surprisingly, bacteria also face this problem. Theoretical biophysicists at Ludwig-Maximilians-Universitaet (LMU) in Munich have now shown how these organisms should ...

Revealing camouflaged bacteria

8 hours ago

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

User comments : 0

More news stories

Chimpanzees prefer firm, stable beds

Chimpanzees may select a certain type of wood, Ugandan Ironwood, over other options for its firm, stable, and resilient properties to make their bed, according to a study published April 16, 2014 in the open-access ...

Revealing camouflaged bacteria

A research team at the Biozentrum of the University of Basel has discovered an protein family that plays a central role in the fight against the bacterial pathogen Salmonella within the cells. The so cal ...

Down's chromosome cause genome-wide disruption

The extra copy of Chromosome 21 that causes Down's syndrome throws a spanner into the workings of all the other chromosomes as well, said a study published Wednesday that surprised its authors.