Bacterium with grabber arms stops intruders

Oct 16, 2009

Bacteria in drinks such as Vifit stop pathogens by using grabber-like arms to cling onto intestinal walls. This discovery is made by a group of Finnish, Belgium and Dutch researchers, under the coordination of Prof. Willem de Vos of the Laboratory of Microbiology (Wageningen University, The Netherlands). The results were published in the Proceedings of the National Academy of Sciences late last week.

The Lactobacillus rhamnosus GG (LGG) bacterium, often found in bacteria drinks such as Vifit, has gained a reputation worldwide for its positive health effects. That LGG makes the intestinal wall less penetrable for intruders is a fact which researchers have known for some time. 'LGG has an impeccable character', says de Vos. 'Its health effects have been proven again and again; we just didn't know how it works.'

It appears that LGG has grabber-like arms called 'pili' with a binding protein at their bases which enables them to adhere to the intestinal mucus lining. In so doing, the bacterium protects the and reinforces the barrier function of the intestine. Other bacteria strains or mutants without pili or binding protein are present in the intestine for much shorter periods.

'By binding to the intestinal mucus membrane, LGG remains longer - and therefore is longer active - in the intestine', explains de Vos. 'We think that LGG competes with pathogens which also adhere to the mucus membrane. The pathogens are defeated when there are sufficient LGG bacteria in the intestine: competitive exclusion.'

Now that the mechanism of the health effects of LGG is known, it seems logical to search for an LGG-variant which can stay in the intestine even longer.

'We could work on an LGG bacterium with more of that , which enables it to be longer active in the intestine', says de Vos. 'That can be done with genetic modification, but traditional selection methods can also be used to pick out with this protein.'

Provided by Wageningen University

Explore further: Ocean microbes display remarkable genetic diversity

add to favorites email to friend print save as pdf

Related Stories

Recommended for you

Ocean microbes display remarkable genetic diversity

2 hours ago

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Cell resiliency surprises scientists

4 hours ago

New research shows that cells are more resilient in taking care of their DNA than scientists originally thought. Even when missing critical components, cells can adapt and make copies of their DNA in an alternative ...

Cell division speed influences gene architecture

Apr 23, 2014

Speed-reading is a technique used to read quickly. It involves visual searching for clues to meaning and skipping non-essential words and/ or sentences. Similarly to humans, biological systems are sometimes ...

User comments : 0

More news stories

Genetic code of the deadly tsetse fly unraveled

Mining the genome of the disease-transmitting tsetse fly, researchers have revealed the genetic adaptions that allow it to have such unique biology and transmit disease to both humans and animals.

Ocean microbes display remarkable genetic diversity

The smallest, most abundant marine microbe, Prochlorococcus, is a photosynthetic bacteria species essential to the marine ecosystem. An estimated billion billion billion of the single-cell creatures live i ...

Study links California drought to global warming

While researchers have sometimes connected weather extremes to man-made global warming, usually it is not done in real time. Now a study is asserting a link between climate change and both the intensifying California drought ...

Autism Genome Project delivers genetic discovery

A new study from investigators with the Autism Genome Project, the world's largest research project on identifying genes associated with risk for autism, has found that the comprehensive use of copy number variant (CNV) genetic ...