Cassini Data Help Redraw Shape of Solar System (w/ Video)

Oct 16, 2009
This image shows an artist's conception of the bubble around our solar system moving through the interstellar medium, the matter that fills the local region of our galaxy. New observations from the Cassini spacecraft orbiting Saturn suggest the shape resembles something like a slippery ball moving through smoke. Image credit: NASA/JPL-Caltech/JHUAPL

(PhysOrg.com) -- Images from the Ion and Neutral Camera on NASA's Cassini spacecraft suggest that the heliosphere, the region of the sun's influence, may not have the comet-like shape predicted by existing models. In a paper published Oct. 15 in Science Express, researchers from the Johns Hopkins Applied Physics Laboratory present a new view of the heliosphere, and the forces that shape it.

"These images have revolutionized what we thought we knew for the past 50 years; the sun travels through the galaxy not like a comet but more like a big, round bubble," said Stamatios Krimigis of the Applied Physics Lab, in Laurel, Md., principal investigator for Cassini's Magnetospheric Imaging Instrument which carries the Ion and Neutral Camera. "It's amazing how a single new observation can change an entire concept that most scientists had taken as true for nearly fifty years."

As the solar wind flows from the sun, it carves out a bubble in the . Models of the boundary region between the heliosphere and interstellar medium have been based on the assumption that the relative flow of the interstellar medium and its collision with the solar wind dominate the interaction. This would create a foreshortened "nose" in the direction of the solar system's motion, and an elongated "tail" in the opposite direction.

This video is not supported by your browser at this time.
As the solar wind flows from the sun, it creates a bubble in space known as the "heliosphere" around our solar system. The heliosphere is the region of space under the influence of our sun. The interstellar medium, the matter that fills the local region of our galaxy, is forced to flow around the heliosphere. It disturbs the solar wind so much as to create a secondary bubble around the heliosphere known as the heliosheath, which is filled with heated, slower solar wind. Animation: NASA/JPL-Caltech/JHUAPL

The Ion and Neutral Camera images suggest that the solar wind's interaction with the interstellar medium is instead more significantly controlled by particle pressure and .

"The map we've created from the images suggests that pressure from a hot population of charged particles and interaction with the interstellar medium's magnetic field strongly influence the shape of the heliosphere," says Don Mitchell, Magnetospheric Imaging Instrument/Ion and Neutral Camera co-investigator at the Applied Physics Lab.

Since entering into orbit around Saturn in July of 2004, the Ion and Neutral Camera has been mapping energetic neutral atoms near the planet, as well as their dispersal across the entire sky. The energetic neutral atoms are produced by energetic protons, which are responsible for the outward pressure of the heliosphere beyond the interface where the collides with the interstellar medium, and which interact with the magnetic field of the interstellar medium.

Images from NASA’s Cassini spacecraft suggest that the heliosphere may not have the comet-like shape predicted by existing models. The instrument imaged a population of hot particles that resides just beyond the boundary of where the solar wind collides with the interstellar medium, forming a termination shock. Credit: Johns Hopkins University Applied Physics Laboratory

"Energetic neutral atom imaging has demonstrated its power to reveal the distribution of energetic ions, first in Earth's own magnetosphere, next in the giant magnetosphere of Saturn and now throughout vast structures in space-out to the very edge of our sun's interaction with the interstellar medium," says Edmond C. Roelof, Magnetospheric Imaging Instrument co-investigator at the Applied Physics Lab.

The results from Cassini complement and extend findings from NASA's Interstellar Boundary Explorer, or IBEX, spacecraft. Data from IBEX and Cassini have made it possible for scientists to construct the first comprehensive sky map of our solar system and its location in the Milky Way galaxy.

More information:

N. A. Schwadron, M. Bzowski, G. B. Crew, M. Gruntman, H. Fahr, H. Fichtner, P. C. Frisch, H. O. Funsten, S. Fuselier, J. Heerikhuisen, V. Izmodenov, H. Kucharek, M. Lee, G. Livadiotis, D. J. McComas, E. Moebius, T. Moore, J. Mukherjee, N.V. Pogorelov, C. Prested, D. Reisenfeld, E. Roelof, G.P. Zank, "Comparison of Interstellar Boundary Explorer Observations with 3-D Global Heliospheric Models," Science Express, Oct. 15, 2009.

H.O. Funsten, F. Allegrini, G.B. Crew, R. DeMajistre, P.C. Frisch, S.A. Fuselier, M. Gruntman, P. Janzen, D.J. McComas, E. Möbius, B. Randol, D.B. Reisenfeld, E.C. Roelof, N.A. Schwadron, "Structures and Spectral Variations of the Outer Heliosphere in IBEX Energetic Neutral Atom Maps," Science Express, Oct. 15, 2009.

D.J. McComas, F. Allegrini1, P. Bochsler, M. Bzowski, E.R. Christian, G.B.Crew, R. DeMajistre, H. Fahr, H. Fichtner, P.C. Frisch, H.O. Funsten, S. A. Fuselier, G. Gloeckler, M. Gruntman, J. Heerikhuisen, V. Izmodenov, P.J anzen, P. Knappenberger, S. Krimigis, H. Kucharek, M. Lee, G. Livadiotis, S. Livi, R.J. MacDowall, D. Mitchell, E. Möbius, T. Moore, N.V. Pogorelov, D. Reisenfeld, E. Roelof, L. Saul, N.A. Schwadron, P.W. Valek, R. Vanderspek, P. Wurz, G.P. Zank, "Global Observations of the Interstellar Interaction from the Interstellar Boundary Explorer-IBEX", Science Express, Oct. 15, 2009.

Provided by JPL/NASA (news : web)

Explore further: Life on Mars? Implications of a newly discovered mineral-rich structure

add to favorites email to friend print save as pdf

Related Stories

First images of solar system's invisible frontier

Jul 02, 2008

NASA's sun-focused STEREO spacecraft unexpectedly detected particles from the edge of the solar system last year, allowing University of California, Berkeley, scientists to map for the first time the energized ...

SwRI Will Lead Interstellar Boundary Explorer Mission

Feb 02, 2005

NASA has chosen Southwest Research Institute® (SwRI) to lead the first mission to image the outer boundaries of the solar system, the region separating our solar system from interstellar space. The Interstellar Boundary ...

Voyager 2 proves solar system is squashed

Dec 10, 2007

NASA's Voyager 2 spacecraft has followed its twin Voyager 1 into the solar system's final frontier, a vast region at the edge of our solar system where the solar wind runs up against the thin gas between the ...

Recommended for you

Australian amateur Terry Lovejoy discovers new comet

13 hours ago

It's confirmed! Australian amateur astronomer Terry Lovejoy just discovered his fifth comet, C/2014 Q2 (Lovejoy). He found it August 17th using a Celestron C8 fitted with a CCD camera at his roll-off roof ...

Students see world from station crew's point of view

Aug 19, 2014

NASA is helping students examine their home planet from space without ever leaving the ground, giving them a global perspective by going beyond a map attached to a sphere on a pedestal. The Sally Ride Earth ...

Mars deep down

Aug 19, 2014

Scarring the southern highlands of Mars is one of the Solar System's largest impact basins: Hellas, with a diameter of 2300 km and a depth of over 7 km.

User comments : 0