Astronomers seek to explore the cosmic Dark Ages

Oct 15, 2009 By Robert S. Boyd

No place seems safe from the prying eyes of inquisitive astronomers. They've traced the evolution of the universe back to the "Big Bang," the theoretical birth of the cosmos 13.7 billion years ago, but there's still a long stretch of time -- about 800 million years -- that's been hidden from view.

Astronomers call it the Dark Ages, and now they're building huge new radio telescopes with thousands of detectors that they hope will let them peer back into the period, when the first and began turning on their lights.

If they succeed, it will be an unprecedented, three-dimensional look at a previously unknown swath of the cosmic history. Some astronomers compare the venture to Galileo's first crude telescope.

"We are taking the same step that Galileo made when he introduced the ," said Lee Rickard, an astrophysicist at the University of New Mexico in Albuquerque, in an e-mail.

Colin Lonsdale, an astronomer at the Massachusetts Institute of Technology's Haystack Observatory in Westford, Mass., said the new detectors would provide "the first view of the cosmic Dark Ages and early structure formation in the ."

For this voyage into deep time, astronomers are using radio telescopes because -- which are much longer and slower than light waves are -- can pass through cosmic dust clouds that optical telescopes can't penetrate.

Furthermore, radio waves coming from such enormous distances are stretched, or "redshifted," toward the red end of the electromagnetic spectrum, where optical telescopes can't observe them.

Because far-off radio signals are so faint, and so easily confused with background interference, only the largest telescopes can even hope to do the job.

At least three major projects are under construction in the U.S., Europe and Australia. Even more ambitious ones are proposed, possibly including a telescope on the dark side of the moon.

The big three are:

• The Long Wavelength Array (LWA), which will consist of about 13,000 spindly antennas in the desert west of Socorro, N.M. The first 256 detectors arrived on site last week, and the completion date for the system is 2010.

The LWA is sponsored by the University of New Mexico, the Los Alamos National Laboratory, the Naval Research Laboratory and others.

• The Murchison Widefield Array (MWA) will have 8,192 antennas in the western Australia outback, an area of low population and modest radio interference. (It's also known as the Mileura Widefield Array because it's near the Mileura Station.)

"The race is on to get it all done in 2010," MIT's Lonsdale said.

The MWA is sponsored by MIT, the National Science Foundation, the U.S. Air Force and the Australian Research Council.

• The Low Frequency Array (LOFAR) will consist of about 5,000 antennas stretching across northern Europe from a center in Holland. It's supposed to be finished in 2011.

LOFAR will detect "the first sources of light in the universe, the first stars and accreting black holes," said radio astronomer Rob Fender, a member of the LOFAR team from the University of Southampton, England. "These will be vital clues to the formation of galaxies and clusters, the building blocks of the universe today."

This array's prime sponsor is ASTRON, the Netherlands Institute for Radio Astronomy. Astronomers in England, France, Germany, Poland and Sweden are also involved.

These big new will be looking for faint radio waves from the time the universe was 380,000 to roughly a billion years old -- the Dark Ages. Astronomers aren't sure when that epoch ended.

The signals are coming from ancient hydrogen, which can be detected by a special line in the . Tiny variations in the hydrogen line indicate regions of slightly higher or lower density in the early universe. Over time, gravity accelerated the growth of these clumps, which became the seeds of the first generation of stars and galaxies.

Astronomers aren't sure whether their new machines will be able to detect luminous objects as they were forming during the Dark Ages, or only at the end of that epoch.

Lonsdale, the MWA investigator, said the Australian telescope should be able to collect signals with usable information "during, but not before" the epoch at the end of the Dark Ages. "It will take a bigger array, perhaps on the moon, to see hydrogen from before," he said in an e-mail.

Rickard, the LWA executive director at the University of New Mexico, said that his project would be searching for hydrogen signals "from the Dark Ages." He cautioned, however, that success will be very difficult because "the brightness variation we are talking about is very small" and will be obscured by "very bright emission from our own galaxy," the Milky Way.

"We won't know until we try," Rickard said.
___

ON THE WEB

Netherlands Institute for Radio Astronomy: www.astron.nl

The Murchison Widefield Array: www.mwatelescope.org

The Long Wavelength Array: lwa.unm.edu
___

(c) 2009, McClatchy-Tribune Information Services.
Visit the McClatchy Washington Bureau on the World Wide Web at www.mcclatchydc.com

Explore further: Astronomer confirms a new "Super-Earth" planet

add to favorites email to friend print save as pdf

Related Stories

NRL to design lunar telescope to see into the dark ages

Mar 11, 2008

A team of scientists and engineers led by the Naval Research Laboratory (NRL) will study how to design a telescope on the Moon for peering into the last unexplored epoch in the Universe’s history. NASA has ...

MIT to lead development of new telescopes on moon

Feb 19, 2008

NASA has selected a proposal by an MIT-led team to develop plans for an array of radio telescopes on the far side of the moon that would probe the earliest formation of the basic structures of the universe. The agency announced ...

Arecibo Begins Search for Dark Galaxies

Feb 08, 2005

Fitted with a new compound eye, the Arecibo radio telescope in Puerto Rico last week began a multiyear effort to survey all the galaxies in a large swath of sky out to a distance of 800 million light years—a ...

Scientists search for dark galaxies through the AGES

Apr 05, 2006

First results from the Arecibo Galaxy Environment Survey (AGES) suggest the discovery of a new dark galaxy. The AGES survey, which started in January 2006, is the most sensitive, large-scale survey of neutral hydrogen to ...

Mystery of missing hydrogen

Nov 24, 2008

Something vital is missing in the far distant reaches of the Universe: hydrogen - the raw material for stars, planets and possible life.

Ghostly glow reveals galaxy clusters in collision

Oct 15, 2008

A team of scientists, including astronomers from the Naval Research Laboratory (NRL), have detected long wavelength radio emission from a colliding, massive galaxy cluster which, surprisingly, is not detected ...

Recommended for you

Kepler proves it can still find planets

Dec 18, 2014

To paraphrase Mark Twain, the report of the Kepler spacecraft's death was greatly exaggerated. Despite a malfunction that ended its primary mission in May 2013, Kepler is still alive and working. The evidence ...

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (1) Oct 17, 2009
Good Luck!

Our research suggests that the universe may be

a.) Finite, with a beginning like the Big Bang except that it produced massive neutron stars that have since evaporated by neutron-emission and neutron decay to fill interstellar space with H (the neutron-decay product), or

b.) Infinite, and oscillating: Expanding as neutron stars evaporate to produce H and

Contracting as attractive gravitational forces become dominate because there are no longer any neutron stars with repulsive forces between the neutrons.

With kind regards,
Oliver K. Manuel

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.