Unusual bacteria help balance the immune system in mice

Oct 15, 2009
A little-known bacterial species called segmented filamentous bacterium, or SFB, can activate the production of specialized immune cells in mice. This scanning electron microscope image of an SFB colony shows a mass of long hair-like filaments created when the bacteria stay attached to each other after they divide. Credit: Credit: Ivaylo Ivanov and Dan Littman (NYU Langone Medical Center) and Doug Wei (Carl Zeiss SMT, Inc.)

Medical researchers have long suspected that obscure bacteria living within the intestinal tract may help keep the human immune system in balance. An international collaboration co-led by scientists at NYU Langone Medical Center has now identified a bizarre-looking microbial species that can single-handedly spur the production of specialized immune cells in mice.

This remarkable activation of the immune response could point to a similar phenomenon in humans, helping researchers understand how gut-dwelling bacteria protect us from pathogenic bacteria, such as virulent strains of E. coli. The study, published in the Oct. 30, 2009, issue of Cell, also supports the idea that specific bacteria may act like neighborhood watchdogs at key locations within the small intestine, where they sense the local microbial community and sound the alarm if something seems amiss.

In mice, at least, the newly identified neighborhood watchdog looks like something out of Disney's "The Shaggy D.A." Distinguished by long hair-like filaments, "These bacteria are the most astounding things I've ever seen," says Dan Littman, MD, PhD, the Helen L. and Martin S. Kimmel Professor of Molecular Immunology and a Howard Hughes Medical Institute Investigator.

Co-led by Dr. Littman's lab, the collaboration with researchers in Japan, California, and Massachusetts zeroed in on a little-known microbe named segmented filamentous bacterium, or SFB. In mice raised under germ-free conditions, the scientists found that adding SFB was sufficient to trigger the appearance of specialized T helper cells known as Th17 cells. These immune specialists, in turn, can send signals that tell epithelial cells lining the small intestine to increase their output of molecules targeting selected microbes.

For the study's mice, the infection-fighting response was enough to ward off the pathogen Citrobacter rodentium, considered a good model for the type of disease-causing E. coli found in contaminated foods like spinach or ground beef. Without SFB to protect them, mice infected with Citrobacter rodentium became ill before recovering.

In the same way, commensal microbes—beneficial bacteria—could decrease our susceptibility to various pathogenic invaders. "So you can immediately see some practical application of this, if one can mimic the presence of these commensal bacteria to strengthen resistance to pathogenic microbes," Dr. Littman says.

Thanks to rapid progress in the field of genomics, he expects the entire DNA sequence of the SFB species to be completed within a few months. Armed with the sequence, researchers could focus on specific proteins. "For example, can we identify a protein that, when we inject it into an epithelial cell, sets off in motion the whole pathway to make Th17 cells?" he says. "By knowing how to do this, you may be able to give people a peptide or a compound that induces Th17 cells by mimicking the bacterial product, and in that way either protect or ameliorate the effect of the infection."

Too much Th17 cell activation, however, can lead to harmful inflammation, Dr. Littman says. Excessive induction by specific microbes in the gut, then, could contribute to autoimmune diseases such as rheumatoid arthritis, psoriasis, Crohn's disease, and possibly even multiple sclerosis.

Source: New York University School of Medicine (news : web)

Explore further: Brand new technology detects probiotic organisms in food

add to favorites email to friend print save as pdf

Related Stories

Bugs in the gut trigger production of important immune cells

Oct 15, 2008

A new study reveals that specific types of bacteria in the intestine trigger the generation of pro-inflammatory immune cells, a finding that could eventually lead to novel treatments for inflammatory bowel disease and other ...

Gene regulates immune cells' ability to harm the body

Jul 17, 2009

A recently identified gene allows immune cells to start the self-destructive processes thought to underlie autoimmune diseases such as multiple sclerosis (MS) and rheumatoid arthritis, researchers at Washington University ...

Recommended for you

Fighting bacteria—with viruses

7 hours ago

Research published today in PLOS Pathogens reveals how viruses called bacteriophages destroy the bacterium Clostridium difficile (C. diff), which is becoming a serious problem in hospitals and healthcare institutes, due to its re ...

Atomic structure of key muscle component revealed

8 hours ago

Actin is the most abundant protein in the body, and when you look more closely at its fundamental role in life, it's easy to see why. It is the basis of most movement in the body, and all cells and components ...

Brand new technology detects probiotic organisms in food

Jul 23, 2014

In the food industr, ity is very important to ensure the quality and safety of products consumed by the population to improve their properties and reduce foodborne illness. Therefore, a team of Mexican researchers ...

Protein evolution follows a modular principle

Jul 23, 2014

Proteins impart shape and stability to cells, drive metabolic processes and transmit signals. To perform these manifold tasks, they fold into complex three-dimensional shapes. Scientists at the Max Planck ...

Report on viruses looks beyond disease

Jul 22, 2014

In contrast to their negative reputation as disease causing agents, some viruses can perform crucial biological and evolutionary functions that help to shape the world we live in today, according to a new report by the American ...

User comments : 0