Goddard Visualization Team Previews Lunar Impact

Oct 08, 2009 by Francis Reddy
Key lunar landmarks used to locate Cabeus crater, the site of the LCROSS crash, are colored and labeled in this view. The yellow scale shows angular distances in the plane of the impact site; blue arcs show heights 50, 100 and 200 kilometers above it. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

(PhysOrg.com) -- At 7:30 a.m. EDT on October 9, a two-ton rocket body will slam into a crater near the moon's south pole. By studying the resulting plume of gas and dust, scientists hope this grand experiment will confirm the presence of ice in permanently shadowed craters at the lunar poles.

The event is the highlight of NASA's Observation and Sensing Satellite (LCROSS) mission. The LCROSS spacecraft flies behind its empty upper stage, which is targeted to strike the floor of Cabeus crater. LCROSS will image the impact and provide direct measurements of the plume before it also plunges into the lunar surface. With LCROSS gone, further measurements of the cloud depend on ground-based observatories around the world.

"This is a completely unique mission that will excavate two large holes dozens of meters across on the lunar surface. It will give us composition measurements we wouldn't otherwise be able to get," said Tim McClanahan, a scientist at Goddard Space Flight Center in Greenbelt, Md.

McClanahan's modeling of the moon's permanently shadowed regions, initially done to support the Lunar Exploration (LEND) instrument aboard NASA's Lunar Reconnaissance Orbiter (LRO), underscored a problem for ground-based follow-up of the LCROSS impact. "We realized that ground observers would have difficulty identifying the location," he said. "It's near the lunar south pole, where illumination is poor and the ability to distinguish nearly edge-on craters is problematic. On top of that, LCROSS will hit the crater floor, but we can only see its rim from Earth."

To provide the detailed information ground-based telescopes needed, McClanahan approached Goddard's Scientific Visualization Studio (SVS). The goal was to find a "sweet spot" where factors such as lunar topography, lighting from the sun, and the view from Earth provided the earliest, highest-contrast view of the rapidly changing plume.

This visualization gives a bird's-eye view of Cabeus crater and the target zone for the crash site. A 3.5-kilometer-wide "flagpole" marks the targeted location within the crater. Colored stripes on the pole indicate one kilometer steps in elevation above the crater floor, black stripes indicate 5 kilometer steps. The pole stands 25 kilometers tall, and the blue rings mark heights of 50 and 100 kilometers above the impact site. Credit: NASA/Goddard Space Flight Center Scientific Visualization Studio

"Visualization aided two aspects of the LCROSS mission," said Ernie Wright at the SVS. "It helped us understand how visible the plume will be from Earth and whether the targeted terrain was flat and in shadow."

The project prefers a crater floor because slopes tend to be rocky, whereas lighter, fluffier materials fall to the lowest elevations. "LCROSS scientists want to send up a debris cloud as high as they can," Wright explained, "so they want to hit these light materials."

Scientists think that hydrogen detected in lunar soil by several instruments, including LEND, may be either icy leftovers from ancient comet impacts or accumulated from the solar wind, a stream of particles flowing from the sun. Whatever its source, scientists assume hydrogen collects in low polar elevations where the sun never shines. This dictates an impact in the shadowed portion of a crater floor.

On September 11, LCROSS mission planners announced that they had targeted a smaller, more northerly crater named Cabeus A. But later that month, analyses of new data from instruments aboard LRO, together with archival measurements from NASA's Lunar Prospector mission of the late 1990s, indicated that the larger Cabeus crater was a better bet.

"The sweet spot for ground-based telescopes lies about two kilometers above the floor of Cabeus," Wright explained. "There, sunlight streaming through a depression in the crater rim will light up the plume while the rest of the crater remains in shadow."

Provided by JPL/NASA (news : web)

Explore further: Earth survived near-miss from 2012 solar storm: NASA

add to favorites email to friend print save as pdf

Related Stories

NASA's LCROSS Mission Changes Impact Crater

Sep 29, 2009

(PhysOrg.com) -- NASA's Lunar Crater Observation and Sensing Satellite mission (LCROSS) based on new analysis of available lunar data, has shifted the target crater from Cabeus A to Cabeus (proper).

NASA launches LCROSS Lunar Impactor

Jun 19, 2009

NASA launched its first moon shot in a decade Thursday, sending up a pair of unmanned science probes that will help determine where astronauts could land and set up camp in years to come.

NASA Moon-Impactor Mission Passes Major Review

Feb 02, 2007

NASA's drive to return astronauts to the moon and later probe deeper into space achieved a key milestone recently when agency officials approved critical elements of a moon impact mission scheduled to launch in October 2008. ...

Recommended for you

Bacteria manipulate salt to build shelters to hibernate

15 hours ago

For the first time, Spanish researchers have detected an unknown interaction between microorganisms and salt. When Escherichia coli cells are introduced into a droplet of salt water and is left to dry, b ...

How do we terraform Venus?

15 hours ago

It might be possible to terraform Venus some day, when our technology gets good enough. The challenges for Venus are totally different than for Mars. How will we need to fix Venus?

Biomarkers of the deep

16 hours ago

Tucked away in the southwest corner of Spain is a unique geological site that has fascinated astrobiologists for decades. The Iberian Pyrite Belt (IPB) in Spain's Río Tinto area is the largest known deposit ...

User comments : 0