Building a better qubit: Combining 6 photons together results in highly robust qubits

Oct 05, 2009
A new method for combining six photons together results in a highly robust qubit capable of transporting quantum information over long distances. Credit: Image courtesy of Carin Cain

Exploiting quantum mechanics for transmitting information is a tantalizing possibility because it promises secure, high speed communications. Unfortunately, the fragility of methods for storing and sending quantum information has so far frustrated the enterprise. Now a team of physicists in Sweden and Poland have shown that photons that encode data have strength in numbers. Their experiment is reported in Physical Review Letters and Physical Review A and highlighted in the October 5 issue of Physics.

In classical communications, a bit can represent one of two states - either 0 or 1. But because photons are quantum mechanical objects, they can exist in multiple states at the same time. Photons can also be combined, in a process known as entanglement, to store a bit of (i.e. a qubit).

Unlike data stored in a computer or typically sent through conventional fiber optic cables, however, qubits are extremely fragile. A kink in a cable, the properties of the cable material, or even changes in temperature can corrupt a and destroy the information it carries. But now a group lead by Magnus Rľdmark at Stockholm University has shown that six entangled photons can encode information that stands up to some knocking around.

Rľdmark and his team proved experimentally that their six qubits are robust and should be able to reliably carry information over long distances. The technology to encode useful information on the qubits and subsequently read it back is still lacking, but once those problems are solved, we will be well on our way to secure, reliable, and speedy quantum communication.

More information:

• Experimental filtering of two-, four-, and six-photon singlets from a single parametric down-conversion source, Magnus Rľdmark, Marcin Wieśniak, Marek Żukowski, and Mohamed Bourennane, Phys. Rev. A 80, 040302 (2009) - Published October 05, 2009, Download PDF (free)

• Experimental Test of Fidelity Limits in Six-Photon Interferometry and of Rotational Invariance Properties of the Photonic Six-Qubit Entanglement Singlet State, Magnus Rľdmark, Marek Żukowski, and Mohamed Bourennane, Phys. Rev. Lett. 103, 150501 (2009) - Published October 05, 2009, Download PDF (free)

Source: American Physical Society

Explore further: Interview with Gerhard Rempe about the fascination of and prospects for quantum information technology

add to favorites email to friend print save as pdf

Related Stories

Quantum Communication Over Flawed Networks may be Possible

Dec 14, 2007

If successfully implemented, quantum communication could be an extremely secure method of transmitting information – but there are major roadblocks to pass. Recently, physicists suggested a way, at least in theory, to overcome ...

Physicists Investigate Unusual Four-Qubit Entanglement

Sep 30, 2009

(PhysOrg.com) -- For the first time, physicists have experimentally demonstrated a four-qubit bound-entangled state - a peculiar form of entanglement that cannot be distilled (optimized) by the usual means. ...

Physicists Entangle Photon and Atom in Atomic Cloud

Jul 26, 2005

Quantum communication networks show great promise in becoming a highly secure communications system. By carrying information with photons or atoms, which are entangled so that the behavior of one affects the ...

Recommended for you

Progress in the fight against quantum dissipation

Apr 16, 2014

(Phys.org) —Scientists at Yale have confirmed a 50-year-old, previously untested theoretical prediction in physics and improved the energy storage time of a quantum switch by several orders of magnitude. ...

A quantum logic gate between light and matter

Apr 10, 2014

Scientists at Max Planck Institute of Quantum Optics, Garching, Germany, successfully process quantum information with a system comprising an optical photon and a trapped atom.

User comments : 0

More news stories

Better thermal-imaging lens from waste sulfur

Sulfur left over from refining fossil fuels can be transformed into cheap, lightweight, plastic lenses for infrared devices, including night-vision goggles, a University of Arizona-led international team ...

Robotics goes micro-scale

(Phys.org) —The development of light-driven 'micro-robots' that can autonomously investigate and manipulate the nano-scale environment in a microscope comes a step closer, thanks to new research from the ...

Hackathon team's GoogolPlex gives Siri extra powers

(Phys.org) —Four freshmen at the University of Pennsylvania have taken Apple's personal assistant Siri to behave as a graduate-level executive assistant which, when asked, is capable of adjusting the temperature ...

Researchers discover target for treating dengue fever

Two recent papers by a University of Colorado School of Medicine researcher and colleagues may help scientists develop treatments or vaccines for Dengue fever, West Nile virus, Yellow fever, Japanese encephalitis and other ...