Physicists seek to keep next-gen colliders in one piece

Oct 05, 2009

(PhysOrg.com) -- Controlling huge electromagnetic forces that have the potential to destroy the next generation of particle accelerators is the subject of a new paper by a University of Manchester physicist.

So-called ‘wake fields’ occur during the process of acceleration and can cause particles to fly apart.

The particles are travelling at extremely high energies - and if they are subjected to these wake fields, they can easily destroy the accelerators.

In his paper ‘Wake field Suppression in High Gradient Linacs for Lepton Linear Colliders’, accelerator physicist Professor Roger Jones examines research into the suppression of these wake fields.

The challenge, he says, is finding a way to suppress wake fields sufficiently while still maintaining a high acceleration field to perform .

Prof Jones said: “Wake fields have been carefully controlled and suppressed in the Large Hadron Collider (LHC) at CERN. However, physicists are now looking at what comes after the LHC.

“An electron-positron collider is the natural successor to the LHC and it turns out the wake fields are much more severe in these linear collider machines.

“Indeed, acceleration of particles to ultra-relativistic energies over several tens of kilometres in the proposed Compact Linear Collider (CLIC), for example, poses several significant accelerator physics challenges to designers of these immense machines.

“Beams consisting of several hundred bunches of tightly focussed charged particles can readily excite intense wake fields, forcing the bunches to fly apart.”

In his conclusions, Prof Jones suggests two approaches to mitigate for the effects of these extreme wake fields.

One approach entails heavy damping, in which the majority of the wake field is sucked out of the collider by structures, known as waveguides, coupled to each cell in the accelerator.

A second approach entails light damping - in which a small portion is removed - in combination with detuning the cell frequencies of the accelerator.

Prof Jones adds: “Detuning the wake field can be understood by thinking about acoustics. If you have a collection of huge bells all ringing at slightly different frequencies or tones, the amplitude or ‘wave height’ of the overall sound heard will be markedly smaller than that heard if they all ring at the same tone. This method is very efficient and structures built in this manner are known as a Damped Detuned Structures (DDS).

“Detuning is perhaps more elegant than heavy damping as it also enables the position of the beam to be determined by the quantity of wake fields radiated by the beam - in this way a DDS accelerator removes the wake fields and has its own built-in diagnostic.”

The DDS concept was developed by Prof Jones and colleagues during one and a half decades spent working at the SLAC National Laboratory at Stanford University in the United States.

Whilst at the University of Manchester, he has recently developed this method to apply to the CLIC 3 TeV centre of mass collider being developed at CERN. More than 143,000 of these accelerating structures will be needed for the CLIC.

Prof Jones added: “At this stage, both means of wake field suppression should be pursued in order to thoroughly assess their applicability. Experimental testing, using realistic pulse lengths and at the high gradients planned for the linear collider, will be the final test on the suitability of these techniques.”

Prof Jones has undertaken research into wake field suppression over the last 20 years - the last four of which have been spent at The University of Manchester’s School of Physics and Astronomy and at The Cockroft Institute of Science and Technology, based at the Daresbury Laboratory in Cheshire..

Prof Jones’ review article is due to be published online in Physical Review Special Topics - Accelerators and Beams on Monday 5 October.

Provided by University of Manchester (news : web)

Explore further: Thermoelectric power plants could offer economically competitive renewable energy

add to favorites email to friend print save as pdf

Related Stories

Argonne physicists create landmark accelerator gradient

Sep 17, 2007

The Argonne Wakefield Accelerator Group (AWA) works on particle accelerators in much the same way that horsepower junkies work on muscle cars. Although their research doesn't involve turbochargers, stall torque ...

Better track leads to new particles

Dec 07, 2006

In particle accelerators new particles often arise as a result of collisions between elementary particles. However the track left by these particles is often difficult to trace. Dutch researcher Thijs Cornelissen ...

Superconductivity for Future Particle Accelerator Project ILC

Aug 23, 2004

Today (August 20), the International Committee for Future Accelerators (ICFA) announced at a scientific conference in Beijing that the planned International Linear Collider (ILC) is to be realized in superconducting technology. This d ...

CERN announces start-up date for Large Hadron Collider

Aug 07, 2008

CERN has today announced that the first attempt to circulate a beam in the Large Hadron Collider (LHC) will be made on 10 September. This news comes as the cool down phase of commissioning CERN's new particle ...

Recommended for you

User comments : 2

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
3 / 5 (2) Oct 05, 2009
Do Colliders Lead To Understanding?

I think not.

Colliders are to Physics what Convulsive Electroshock Treatments are to Psychiatry.

With kind regards,
Oliver K. Manuel
Bob_Kob
not rated yet Oct 06, 2009
Thats a bit harsh, colliders have uncovered a wealth of information on how particles behave, and particles that had not been discovered.

However I have to agree that building bigger and bigger colliders does not entail that we would understand more and more of the universe, we're probably approaching the point where we have gathered as much information through colliders as possible.

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.