'Anti-Atkins' low protein diet extends lifespan in flies

Oct 01, 2009

Flies fed an "anti-Atkins" low protein diet live longer because their mitochondria function better. The research, done at the Buck Institute for Age Research, shows that the molecular mechanisms responsible for the lifespan extension in the flies have important implications for human aging and diseases such as obesity, diabetes and cancer.

The findings, which appear in the October 2 edition of Cell, also provide a new level of understanding of the regulation of mitochondrial genes and open new avenues of inquiry into the interplay between mitochondrial function, diet and .

Mitochondria act as the "powerhouse" of the cells. It is well known that mitochondrial function worsens with in many species and in humans with Type II diabetes and obesity. "Our study shows that dietary restriction can enhance mitochondrial function hence offsetting the age-related decline in its performance," said Buck faculty member Pankaj Kapahi, PhD, lead author of the study.

The research provides the first genome-wide study of how proteins are translated under dietary restriction in any organism. The researchers report the unexpected finding that while there is a reduction in protein synthesis globally with the low protein diet, the activity of specific genes involved in generating energy in the mitochondria are increased, Kapahi said. That activity, which takes place at the level of conversion of RNA to protein, is important for the protective effects of dietary restriction, Kapahi said. "There have been correlative studies that show mitochondria change with dietary restriction, this research provides a causal relationship between diet and mitochondrial function," he said.

The study describes a novel mechanism for how mitochondrial genes are converted from RNA to protein by a particular protein (d4EBP). Flies fed a low protein diet showed an uptick in activity of d4EBP, which is involved in a signaling pathway that mediates cell growth in response to nutrient availability called TOR (target of rapamycin). The research showed that d4EBP is necessary for lifespan extension upon dietary restriction. When the activity of the protein was genetically "knocked out" the flies did not live longer, even when fed the low protein diet. When the activity of d4EBP was enhanced, lifespan was extended, even when the flies ate a rich diet.

The research calls into question the health benefits of high-protein diets which are often used by humans to lose weight Kapahi said. The long-term impacts of such diets have not been examined in humans; they are likely to be harmful, he said. "In flies, we see that the long-lived diet is a low protein diet and what we have found here is a mechanism for how that may be working," Kapahi said.

The study provides a significant advance in understanding the role of 4EBP, a downstream molecular target of TOR, which mediates a switch in metabolism to extend lifespan, Kapahi said. A recent study appearing in the Nature showed that feeding rapamycin (an antibiotic used to prevent the rejection of organ and bone marrow transplants) to mice inhibited TOR and extended their lifespan. The Buck Institute study implies an important role for 4EBP and mitochondrial function as excellent targets to explore their role in lifespan extension in mammals, Kapahi said.

Source: Buck Institute for Age Research

Explore further: DOE 'Knowledgebase' links biologists, computer scientists to solve energy, environmental issues

add to favorites email to friend print save as pdf

Related Stories

New insights into cardiac aging

Sep 14, 2009

Investigators at Burnham Institute for Medical Research (Burnham) have found that the conserved protein d4eBP modulates cardiac aging in Drosophila (fruit flies). The team also found that d4eBP, which binds to the protein ...

Scientists identify new longevity genes

Mar 12, 2008

Scientists at the University of Washington and other institutions have identified 25 genes regulating lifespan in two organisms separated by about 1.5 billion years in evolutionary change. At least 15 of those genes have ...

Recommended for you

User comments : 1

Adjust slider to filter visible comments by rank

Display comments: newest first

210
3 / 5 (2) Oct 01, 2009
Indeed:
The Atkins diet was a "low carbohydrate" diet.
It was aimed primarily if not exclusively toward:
1) The average person in a given culture, that is, 'human.'
2) AN ALL READY overweight person, who, therefore was already battling the rages of obesity and suffering its effects.
"Anti-Atkins?" uumm, shouldn't that technically or more literally be a "High Carbohydrate" diet?
But to follow the gist of the report: it would have been even more inciteful to have placed those mice on a 'mice-treadmill' or a 'mice-bodybuilding regimen' and measure the proper waste components from the mice as a function of seeing whether the mice:
1) Consumed more protein to assist the demands for aerobic stress OR needed more protein to lift more weights, and, or
2) Released or manufactured MORE 4EBP as stimulated to do so by there work loads/biochemically perceived stress loads and not only lived longer but reaped the evident quality-of-life benefits of greater personal fitness.
So: work raise 4EBP?