Very High Energy Gamma Rays

Sep 25, 2009
Very high energy gamma rays as measured by VERITAS. The color scale indicates the number of gamma-rays seen, with white being the most. Contours show the emission from molecular gas. The open yellow cross shows the location of a neutron star (the ashes of a supernova). Credit: Acciari et. al.

(PhysOrg.com) -- Gamma-rays are the most energetic known form of electromagnetic radiation, with each gamma ray being at least one hundred thousand times more energetic than an optical light photon. The most potent gamma rays, the so-called VHE (very high energy) gamma rays, pack energies a billion times this, or even more. Astronomers think that VHE gamma rays are produced in the environment of the winds or jets of the compact, ultra-dense remnant ashes of massive stars left behind from supernova explosions.

There are two kinds of compact objects produced in supernovae: and (stars made up predominantly of neutrons). The winds, jets, or magnetic fields from the environments of these objects are known to be able to accelerate electrons to very close to the speed of light, and when light scatters off such energetic particles it becomes energized as well, sometimes turning into VHE . An alternative scenario suggests that colliding protons could be the source of the VHE gamma rays.

VERITAS (the Very Energetic Radiation Imaging Telescope Array System) is designed to study gamma rays. It consists of four 12-m telescopes located at the Fred L. Whipple Observatory at Mt. Hopkins, Arizona. A team of eight CfA astronomers and a large international group of their colleagues used VERITAS to detect VHE gamma rays from a supernova remnant located in our galaxy about 40,000 light-years from earth. The array was able to obtain an image of the VHE emission; its high-confidence detection was notable for showing that these powerful gamma rays come from an extended region.

The scientists were surprised to find that the emission is centered on a nearby molecular cloud (as measured from the cloud's millimeter wave emission), and noticeably offset from the location of the neutron star itself. One implication is that these VHE gamma rays might not be produced by energetic electrons accelerated by the compact object, but by protons interacting with the molecular cloud. The new paper provides a deeper look at the physical processes underway in the environment of these extreme cosmic objects.

Provided by Harvard-Smithsonian Center for Astrophysics (news : web)

Explore further: Astronomers measure weight of galaxies, expansion of universe

add to favorites email to friend print save as pdf

Related Stories

Mystery compact object producing high energy radiation

Jul 12, 2005

In a recent issue of Science Magazine, the High Energy Stereoscopic System (H.E.S.S.) team of international astrophysicists reports the discovery of another new type of very high energy (VHE) gamma ray so ...

Discovery of gamma rays from the edge of a black hole

Oct 27, 2006

The astrophysicists of the international H.E.S.S. collaboration report the discovery of fast variability in very-high-energy (VHE) gamma rays from the giant elliptical galaxy M 87. The detection of these gamma-ray ...

Recommended for you

Evidence of a local hot bubble carved by a supernova

15 hours ago

I spent this past weekend backpacking in Rocky Mountain National Park, where although the snow-swept peaks and the dangerously close wildlife were staggering, the night sky stood in triumph. Without a fire, ...

Astronomers measure weight of galaxies, expansion of universe

23 hours ago

Astronomers at the University of British Columbia have collaborated with international researchers to calculate the precise mass of the Milky Way and Andromeda galaxies, dispelling the notion that the two galaxies have similar ...

Mysterious molecules in space

Jul 29, 2014

Over the vast, empty reaches of interstellar space, countless small molecules tumble quietly though the cold vacuum. Forged in the fusion furnaces of ancient stars and ejected into space when those stars ...

Comet Jacques makes a 'questionable' appearance

Jul 28, 2014

What an awesome photo! Italian amateur astronomer Rolando Ligustri nailed it earlier today using a remote telescope in New Mexico and wide-field 4-inch (106 mm) refractor. Currently the brightest comet in ...

User comments : 3

Adjust slider to filter visible comments by rank

Display comments: newest first

omatumr
1 / 5 (1) Sep 25, 2009
Repulsive Forces Between Neutrons Produce . . .

The VHE gamma rays observed from "the compact, ultra-dense remnant ashes of massive stars left behind from supernova explosions" [See: "Attraction and repulsion of nucleons: Sources of stellar energy," Journal of Fusion Energy 19 (2000) 93-98].

With kind regards,
Oliver K. Manuel
brant
1 / 5 (1) Sep 25, 2009
They dont mention anything about the possibility of a plasma pinch being the source of these gamma rays.
In other papers they talk about 'knots' around supernova that produce cosmic rays. These knots are plasma pinches and can also produce lower energy photons on a distributed timescale, thereby also explaining the mystery of the high and low energy gammas reaching us at different times(no quantum foam etc)...

When the look further I suspect the will find a filament connecting the "neutron" star and the source of the gamma emission.
omatumr
1 / 5 (1) Sep 27, 2009
They dont mention anything about the possibility of a plasma pinch being the source of these gamma rays.


Yes. In the cosmos and in each atom in it, the highest energy photons come from the region of highest density.

With kind regards,
Oliver K. Manuel