Golden Nanotubes Detect Tumor Cells, Map Sentinel Lymph Nodes

Sep 24, 2009

(PhysOrg.com) -- Biomedical researchers at the University of Arkansas in Fayetteville and the University of Arkansas for Medical Sciences (UAMS) in Little Rock have developed a special contrast-imaging agent made of gold-coated carbon nanotubes that is capable of molecular mapping of lymphatic endothelial cells and detecting cancer metastasis in sentinel lymph nodes. The findings from this study, which was led by Jin-Woo Kim, Ph.D., M.S., University of Arkansas, and Vladimir P. Zharov, Ph.D., D.Sc., M.S., UAMS, were published in the journal Nature Nanotechnology.

Photoacoustic and photothermal methods developed by Dr. Zharov deliver energy, via , into biological tissue through interaction of the laser light with carbon nanotubes. When some of the energy is absorbed by the carbon nanotubes and converted into heat, the nanotubes expand and emit sound waves. However, carbon nanotubes have not been previously developed as an imaging agent because of concerns about toxicity.

Dr. Kim’s research team addressed the toxicity problem by depositing a thin layer of gold around the carbon nanotubes, enhancing absorption of laser radiation and reducing toxicity. In vitro tests showed only minimal toxicity associated with the gold nanotubes. Compared with existing nanoparticles, the gold nanotubes also exhibited high laser absorption at a miniscule diameter. The gold nanotubes required extremely low laser energy levels for detection, and low concentrations were required for effective diagnostic and therapeutic applications.

In the current study, the investigators coupled their gold nanotubes with an antibody specific to a critical lymphatic-endothelial receptor. This enabled the researchers to map the endothelial cells that line the internal surface of lymphatic vessels. This is important because lymphatic endothelial cells come into direct contact with other cells, such as immune-related cells, tumor cells, and bacteria entering the lymphatic system. The specific receptor, known as LYVE-1, is one of the most widely used markers of lymphatic endothelium.

In one set of experiments, the research team successfully demonstrated the unique ability of the gold nanotubes for integrated diagnosis and therapy at the single-cell level. First, they used photoacoustic spectroscopy to detect gold nanotubes that were binding to tumor cells within sentinel lymph nodes, the first lymph node or group of nodes reached by metastasizing cancer cells from a primary tumor, in mice bearing human tumors. They then switched to photothermal mode, which involved boosting the laser intensity by approximately sixfold, and demonstrated that they were able to destroy those very tumor cells.

This work, which is detailed in the paper “Golden carbon nanotubes as multimodal photoacoustic and photothermal high-contrast molecular agents,” was supported by the National Cancer Institute. An abstract is available at the journal’s Web site.

Provided by National Cancer Institute (news : web)

Explore further: Gold nanorods target cancer cells

add to favorites email to friend print save as pdf

Related Stories

Carbon Nanotubes Have Room for Multifunctionality

Sep 27, 2007

In the quest to turn carbon nanotubes from nanoscale wonder into clinically useful drug and imaging agent delivery agents, researchers have often added polymer coatings to the outside of the nanotubes in order to render them ...

Scientists fight cancer with nanotechnology

May 21, 2009

(PhysOrg.com) -- Nanotechnology researchers at the University of Arkansas at Little Rock have developed a method of detecting, tracking, and killing cancer cells in real time with carbon nanotubes.

Nanotube Coating Meshes with Living Cells

Aug 14, 2006

Using a polymer coating that mimics part of a cell’s outer membrane, a team of investigators at the University of California, Berkeley, have developed a versatile method for targeting carbon nanotubes to specific types ...

Recommended for you

User comments : 0

Please sign in to add a comment. Registration is free, and takes less than a minute. Read more

Click here to reset your password.
Sign in to get notified via email when new comments are made.